ORIGINAL ARTICLE

Unraveling NAC family transcription factors and their expression analysis under high temperature and drought stress in Peanut

Suchithra B.¹, Shafia Hoor F.¹. Puspha T. C.² and Nagesh Babu R.^{1*}

¹ Department of Chemistry & Biochemistry, Maharani Cluster University, Bengaluru - 560001, Karnataka, India

² Department of Zoology, Maharani Cluster University, Bengaluru - 560001, Karnataka, India

*E-Mail: nageshbabur@gmail.com

Received September 11, 2024

Transcription factors play pivotal roles in the conversion of stress signal perception to stressresponsive gene expression. NAC (NAM, ATAF1/2 and CUC2) domain proteins are plantspecific transcriptional factors known to play diverse roles in various plant developmental processes and received considerable attention as regulators in stress signaling. Considering the relatively large number of NAC transcription factors from different plants and their diverse roles under complex environmental stimuli remains a challenge. In this study, phylogenies, genome localizations, gene structure and expression profiles of NAC genes under high temperature and drought treatments, with a focus on Peanut (Arachis hypogaea) genotypes (A. duranensis & A. ipaensis) was performed. Thirty eight NAC genes from each genotype were detected, including eight membrane-bound members which includes AdNAC26, AdNAC36, AiNAC16, AiNAC17, AiNAC37, AdNAC14, AiNAC12 & AiNAC29. Majority of the identified NAC proteins had atleast four NAC domain containing conserved motifs and were found to be localized to nucleus. AdNAC21 and AiNAC3 were found to be positive regulators in drought and high temperature responses. Our results provides foundation for selection of promising stress- responsive NAC candidates for detailed plant functional analysis, leading to development of transgenic Peanut varieties with improved productivity under drought and high temperature.

Abbreviations: TFs- Transcription factors; TMHs- Trans-membrane helices; NTL- NTM like; NTM-NAC with Trans-membrane Motifs

Key words: NAC transcription factor, phylogenetic analysis, qRT-PCR, Peanut

Abiotic stresses such as high temperature and drought greatly limit the growth and crop productivity worldwide. Several NAC (NAM, ATAF1/2, and CUC2) proteins have been documented as important regulators in stress responses. The NAC TFs function as important components in complex signaling progresses during plant stress responses. Until recently, the possible involvement of TF NAC proteins in abiotic stress responses was deduced indirectly from transcription profiling; recent functional analyses, however, have provided some direct evidence. The tight regulation and fine-tuning of NAC genes during plant stress responses contribute to the establishment of complex signaling webs, and the important roles of NAC genes in stress responses make them potential candidates for imparting stress tolerance. Plant-specific NAM, ATAF1/2, and CUC2 (NAC) proteins constitute one of the largest transcription factor (TF) families and are characterized by a well-conserved N terminal NAC domain (Olsen et al., 2005, Puranik et al., 2012). The NAC domain, which comprises nearly 160 amino acid residues, can be divided into five sub domains (A to E) based on its motif distribution (Aida et al., 1997, Ooka et al, 2003). The highly conserved sub-domains C and D may be responsible for binding to DNA, sub domain A may be involved in homo- and hetero- dimerization, and the divergent sub-domains B and E may be implicated in the functional diversity of NAC proteins (Ooka et al., 2003: Jensen et al., 2010; Chen et al., 2011). Genes encoding NAC proteins were regulated (i) transcriptionally by upstream TFs such as ABREs (ABA-responsive elements) and DREs (Dehydration-responsive elements), (ii) post transcriptionally by micro-RNAs or alternative splicing, and (iii) post-translationally by dimerization, ubiguitinization, phosphorylation or proteolysis (Puranik et al., 2012). As an additional feature, some NAC proteins comprise a helical transmembrane motif for anchoring to plasma membrane or endoplasmic reticulum NAC proteins have been implicated in a wide range of plant developmental processes, including lateral root formation (He et al., 2005), shoot branching (Mao et al., 2007), flowering (Sablowski, Meyerowitz, 1998) and leaf senescence (Guo, Gan, 2006). In particular, numerous NAC domain proteins have also been implicated in various defense responses such as drought (Jeong et al., 2010), salinity (Zheng et al., 2009), cold (Aslam et al., 2012), fungal and bacterial pathogens (Wang et al., 2009). Extensive investigation aided by the availability of several complete plant genomic sequences has identified more than 100 NAC genes in Arabidopsis, rice, sovbean, foxtail millet, Chinese cabbage, 74 in grape (Vitis vinifera) and 88 in pigeonpea (Wu et al., 2015) etc. Abiotic stress triggers a wide range of plant responses, from the alteration of gene expression and cellular metabolism to changes in plant growth, development, and crop yield. Thus, understanding the complex mechanism of drought and high temperature tolerance is important for agriculture production (Nuruzzaman et al., 2013). Although the genes encoding the transcription factors just accounts for a little portion in the whole genome, transcription factors are important in the regulated networks (Hobert, 2008).

Peanut (Arachis hypogaea L.) is an oilseed crop cultivated worldwide and one of the major grain legumes in tropical and subtropical regions. However, its productivity is strongly affected by drought one of the most serious constraints to crop production and, associated with the predicted consequences of global climate change, increases the need for drought-adapted varieties. To date, 80 species in genus Arachis were identified and have been classified into nine taxonomic sections (Bertiol et al., 2011). Wild species are diploid, but cultivated peanut is allotetraploid (AABB). The wild ancestral species of cultivated peanut are generally considered to be duranensis and ipaënsis, which contributed the A and B sub-genomes, based on morphology, cytology, fertility of the interspecific hybrid and molecular studies (Kochert et al., 1996; Ramos et al., 2006). NAC genes in plants have been investigated in great detail for their role in various stress and developmental aspects; thus, they could be important candidates for the improvement programs. Detailed analysis of NAC domain genes using the assembled Peanut genome including prediction of gene functions, evolutionary significance and investigation of their expression profiles is necessary to understand function of NAC gene family. Our results provide a comprehensive genome-wide knowledge of NAC proteins in peanut and a preliminary knowledge of specific NAC proteins potentially involved in drought and high temperature response in peanut. Through these analyses, we have increased knowledge concerning the evolution and function of Peanut NAC genes.

MATERIALS AND METHODS

Plant materials and treatment

Seeds of Peanut (Luhua14) were surface-sterilized and grown under controlled conditions at 28 °C day/25 °C night with a 12-h light/12-h dark photo period. After 10 days of germination, drought was imposed by withholding water for 5 days and for high temperature stress seedlings were exposed to high-temperature [42 °C for 2h (induction) followed by 48 °C for 6h]. After the stress treatment, control and stress exposed shoot were harvested immediately and stored at -80 °C for further analysis.

Identification, characterization and subcellular localization of NAC genes

The NAC domain containing protein sequences of Peanut were retrieved from the Plant Transcription Factor Database ver. 2.0. and Arachis genome (Peanut Base) for the hidden Markov model (HMM) profile of the NAC domain downloaded from the Pfam database using HAMMER (ver. 3.0). All redundant sequences were removed and the collected data were further curated by examining the presence of the conserved NAC domain with the help of Pfam (http://pfam.sanger.ac.uk/), SMART (http://smart.embl-heidelberg.de/) and InterProScan (http://www.ebi.ac.uk/Tools/InterProScan/) web server. The length, molecular weight and pl of each deduced polypeptide were calculated using **ExpasyProtParam** tool (http://web.expasy.org/protparam/). CELLO Further, WOLF **PSORT** (http://cello.life.nctu.edu.tw/) and (http://www.genscript.com/psort/wolf psort.html) tools were used to predict the subcellular localizations. Amino acid sequences of NAC TFs belonging to Peanut were imported to BioEdit v7.2.5 (Hall, 1999) and multiple sequence alignment was performed with NAC protein sequences from Arabidopsis and Glycine max using

ClustalW with default parameters. The NAC sequences along with Arabidopsis sequences were imported into MEGA v6.06 (Tamura *et al.*, 2013) to construct a phylogenetic tree by Neighbor-Joining method and the bootstrap test was performed with 1000 iterations. Finally, TMHMM Server ver. 2.0 (http://www.cbs.dtu.dk/services/TMHMM/) was used to predict the membrane bound NAC members.

Genome wide distribution pattern, Gene structure and identification of conserved motifs

The chromosomal location of AdNAC and AiNAC genes were obtained from peanut base website (http://peanutbase.org/) and the map was generated using MapInspect (http://mapinspect.software.informer.com/). Gene Structure Display Server from Center for Bioinformatics, Peking University, was used to display the intron exon junctions (http://gsds.cbi.pku.edu.cn/index.php). The genomic and mRNA sequences of these NACs were downloaded and used as query for generating its gene structure. A number of introns and exons were estimated based on this alignment and confirmed by the coordinates given in the sequences. The MEME Suite tool v4.9.1 (http://meme.nbcr.net/meme) (Bailey et al., 2009) was utilized for analysis of the conserved motifs. STRING 10 (http://string.embl.de/), computational tool was used to predict the functional protein association network gene ontology annotation (GO) of the NAC proteins in Arabidopsis with the default parameters. These interactions were derived from genomic context, high-throughput experiments and co-expressions studies.

Expression analysis of NAC genes

Total RNA was isolated from control and stress tissue using TRizol (Invitrogen) according to the manufacturer's instructions and then treated with RNAase- free DNAase I (Promega). All RNA samples were quantified by Nanodrop 2000 (Thermo Scientific). cDNA was synthesized by reverse transcription with 500ng of total RNA using PrimeScript RT Reagent Kit (Takara) according to the manufacturer's instructions. Gene specific primers were designed using Primer3 software (Additional Resource 1). qRT- PCR reactions were performed using SYBR Green PCR Master mix (Takara) on Lightcycler96 Real time PCR (Roche). Each PCR reaction (20 μ l) included 2 μ lcDNA, 1x SYBR Green Master mix, 0.5 μ l sequence-specific forward primer (10 μ M), 0.5 μ l universal reverse primer (10 μ M), and 7 μ l sterile water. The NAC expression was normalized against actin as reference gene. The reactions conditions were 95 °C for 10 min followed by 40 cycles of 95 °C for 15 s, 55 °C for 30s and 72 °C for 15s. All reactions were run with three technical and two biological replicates and the data was analyzed using 2^{- $\Delta\Delta$ CT} method.

RESULTS

Protein features, Multiple sequence alignment and Phylogenetic analysis

To identify all the NAC transcription factors, we retrieved all the predicted NAC genes from Plant TFDB and Peanut Base (http://peanutbase.org/). Basic information like molecular weight and pl are depicted in Additional Resource 2. The average polypeptide length was 347.1 residues with the length ranging from 158 aa (AdNAC17) to 698 aa (AiNAC37). The pl values range from 4.43 to 9.46. The subcellular localization results revealed that majority of the proteins were localized to nucleus and 9/76 were predicted to be localized in cytoplasm. The multiple alignment of AdNACs, AiNACs and NACs from Arabidopsis and Glycine max indicated that all of the Peanut NACs shared a highly conserved N-terminal DNA binding NAC domain, which consists of five consensus sub-domains (A-E), and a variable Cterminal transcriptional regulation domain. Additionally, a conserved bipartite nuclear localization signal was also found in the D subdomain of the majority of Peanut NACs, suggesting that these NACs may be localized to the nucleus (Additional Resource 3) (Greve et al., 2003). To examine the structure and phylogenetic relationships of Peanut NAC TFs identified in our study, a combined phylogenetic tree was constructed with the aligned NAC domains from Peanut, Arabidopsis and soybean (Fig. 1). Examination of the phylogenetic tree analysis emphasis that the Peanut NAC TFs can be classified into nine major groups: Group I (14) Group II (8), Group III (17), Group IV (5), Group V (14), Group VI (4), Group VII (2), Group VIII (4) and Group IX (8). Phylognetic trees constructed from the AdNACs, AiNACs and AdNAC-

AiNACs together are depicted in the Additional Resource 4A & Fig. 2 respectively.

Identification, chromosomal distribution and gene structure of NAC members

The keyword, HMM profile and BLAST search predicted that the Peanut genome encodes about 38 NAC proteins. A total of 38 NAC genes were identified from both A. duranensis and A. ipaënsis. They were named as AdNAC1 to AdNAC38, and AiNAC1 to AiNAC38, respectively. The genome of Peanut comprises of 20 chromosomes (10 from duranensis and 10 from *ipensis*) varying in their length, shortest being chromosome 8 (48.94 Mb) and longest is the chromosome 3 (133.14 Mb) in A. duranensis while in A. ipaënsis, shortest being chromosome 2 with 108.64 Mb and longest being chromosome 5 with 149.44 Mb in size (Fig. 3). In silico mapping of NACs indicated an uneven distribution of the genes on all the chromosomes. The exact position (in bp) of each AdNACs and AiNACs on Peanut chromosomes is given in Additional Resource 2. The gene structures were investigated through genomic annotation to determine the structural diversity. All NAC genes harbored at least two exons except AiNAC16 being the shortest not having intron. In addition, a separate phylogenetic tree was generated from the complete protein sequences of all the NAC genes (Fig. 2).

Identification of conserved motifs and Gene annotation

The MEME (Multiple Expectation Maximization for Motif Elicitation) server was used for exploring motif distribution in 38 AdNAC and 38 AiNAC proteins. Nine different conserved motifs were identified, of which most of them had at least four NAC domain-encoding motifs, and 54 shared a highly conserved typical NAC domain containing five consensus sub domains (motifs 2, 4, 1, 5 and 3) in the same order (Fig. 4). The motif sequence logos are depicted in the Additional Resource 4C. Prediction of functional protein association network of NAC proteins in Arabidopsis using STRING program revealed the interaction of NAC083 (AdNAC15) with VND1, VND7, NAC1, NAC41, ANAC026 and NAC007; XND1 (AdNAC5) with NAC073 and NAC010; NAC090 (AiNAC14) with NAC044 and NAC036; BTF3 (AiNAC2) with NACA2 and AT3G12390 (Additional Resource 4D). Gene ontology (GO) annotation of NAC proteins showed the involvement of these proteins in different biological processes, cellular and molecular functions (Additional Resource 4E). The membrane transcription factors proteins are stored in their dormant forms in association with the intracellular membranes. When plants are exposed to abrupt environmental changes, they are released from the membranes through proteolytic cleavage events and enter the nucleus, where they regulate expression of genes involved in perception of stress signals, stress signaling (Kim *et al.*, 2010). Among 76 NACs (38 AdNACs& 38 AiNACs), 08 members (AdNAC14, 26, 36, AiNAC16, 17, 29 and 37) were identified as membrane-associated NTLs using the TMHMM v2.0 (Table 1), of which 5 (AdNAC26, AdNAC36, AiNAC16, AINAC17 and AiNAC37) and 3 (AdNAC14, AiNAC12 and AiNAC29) members contain one and two TMHs, respectively. The phylogenetic tree constructed with membrane associated NTLs identified from Peanut, *Arabidopsis* and Rice indicated that the Peanut NTLs were scattered into different groups (Additional Resource 4B).

Figure 1: Unrooted phylogenetic tree constructed using the neighbor-joining (NJ) method, and the bootstrap test was carried out with 1,000 iterations representing the relationships between the Peanut, *Arabidopsis* and *Glycine max* NAC domain proteins.

Figure 2. Phylogenetic relationship and gene structure of the NAC genes. Phylogenetic tree was constructed with MEGA6.0 using the neighbor-joining (NJ) method with 1,000 bootstrap replicatesbased on a multiple alignment of 76 amino acid sequences of NAC genes from Arachis duranensis & Arachis ipaënsis. Exon/ intron structure of NAC genes are represented by boxes and black lines, respectively.

cM

Figure 3: Distribution of 76 NAC genes on Peanut chromosomes and physical locations of each NAC gene on the ten chromosomes from each species (positions in cM).

Gene Name	Membrane bound member	Length (aa)	Transmembrane sequences	Expected number of AAs in TMHs	Expected number, first 60 AAs	
AdNAC14	C14 AdNTL1, 633		525544	40.88286	0	
	AdNTL2		612631			
AdNAC26	AdNTL3	551	523545	22.13992	0.00091	
AdNAC36	AdNTL4	592	569591	22.56383	0.01596	
AiNAC12	AiNTL5,	678	582604	41.84687	0	
	AiNTL6		656675			
AiNAC16	AiNTL7	216	527	20.81172	20.80519	
AiNAC17	AiNTL8	559	531553	22.14053	0.00084	
AiNAC29	AiNTL9,	583	531553	40.01905	0	
	AiNTL10		558580			
AiNAC37	AiNTL11	698	669691	22.56604	0.01787	

Table 1: Putative membrane- bound Peanut NTLs

22

	Name	<i>p</i> -value	Motif Location	
1.	AdNAC1	2.24e-110		
2.	AdNAC2	1.27e-107		
5.	AdNAC5	1.60e-61		
6.	AdNAC6	4.86e-61		
7.	AdNAC7	5.23e-83		
8.	AdNAC8	5.48e-124		
9.	AdNAC9	2.26e-78		
10.	AdNAC10	4.79e-141		
11.	AdNAC11	2.04e-86		
12.	AdNAC12	3.62e-87		
13.	AdNAC13	1.18e-86		
14.	AdNAC14	4.95e-102		
15.	AdNAC15	6.06e-89		
16.	AdNAC16	8.23e-99		
17.	AdNAC17	9.24e-54		
18.	AdNAC18	1.42e-80		
19.	AdNAC19	7.68e-83		
20.	AdNAC20	6.10e-123		
21.	AdNAC21	4.22e-95		
22.	AdNAC22	9.53e-100		
23.	AdNAC23	7.43e-101		
24.	AdNAC24	9.99e-104		
25.	AdNAC25	1.58e-90		
26	AdNAC26	2 470-94		
20.	AdNAC27	1 260 99		
27.	Addiacan	2 720 102		
20.	AdNAC20	2.720-103		
29.	Addiac20	1.020-104		
30.	AdivAC30	1.020-104		
31.	AdivAC31	1.920-108		
32.	AdivAC32	1.186-55		
33.	AdivAC33	2.01e-05		
34.	AdNAC34	8.610-109		
35.	AdivAC35	1.24e-103		
36.	AdNAC36	3.62e-87		
37.	AdNAC37	1.12e-16		
38.	AdNAC38	1.40e-66		
39.	AiNAC1	2.85e-111		
41.	AiNAC3	9.44e-83		
42.	AiNAC4	4.89e-62		
43.	AiNAC5	3.20e-104		
44.	AiNAC6	1.53e-87		
45.	AiNAC7	2.33e-89		
46.	AiNAC8	6.33e-102		
47.	AiNAC9	4.63e-99		
48.	AiNAC10	9.92e-94		
49.	AiNAC11	2.23e-80		
50.	AiNAC12	4.18e-103		
51.	AiNAC13	4.44e-95		
52.	AiNAC14	5.46e-56		
53.	AiNAC15	1.60e-86		
54.	AiNAC16	1.91e-44		
55.	AiNAC17	2.69e-84		
56.	AiNAC18	5.89e-102		
57.	AiNAC19	7.46e-88		
58.	AiNAC20	2.83e-104		
59.	AiNAC21	4.65e-123		
60.	AiNAC22	1.83e-141		
61.	AiNAC23	6.04e-90		Motif 1
62.	AiNAC24	3.46e-55		Motif2
63.	AiNAC25	1.43e-36		
64.	AiNAC26	7.68e-83		Motif 3
65.	AiNAC27	1.97e-108		Motif 4
66.	AiNAC28	2.59e-90		
67,	AiNAC29	1.46e-72		Motif 5
68.	AiNAC30	5.61e-45		Motif 6
69	AINAC31	9,41e-104		
70	AINAC32	6.100-70		Motif7
74	AINACRE	6 500-19		Motif 8
75	AINAC27	8 020 00		
72.	AINACOR	1.070.100		Motif9
70.	AUTOCO0	1.076-108		

Figure 4: Schematic representation of conserved motifs in the AdNAC and AiNAC proteins predicted by MEME. Each motif is represented by a number in the colored box. The black lines represent non-conserved sequences.

Figure 5: Expression profile of *AdNAC* genes obtained by RT-qPCR of treated (drought) and well watered (WW) control shoot samples

Figure 6: Expression profile of *AiNAC* genes obtained by RT-qPCR of treated (drought) and well watered (WW) control shoot samples

Figure 7: Expression profile of *AdNAC* genes obtained by RT-qPCR of treated (high temperature) and well watered (WW) control shoot samples

Figure 8: Expression profile of *AiNAC* genes obtained by RT-qPCR of treated (high temperature) and well watered (WW) control shoot samples

Expression profiles of AdNAC and AiNAC genes during high temperature and drought stress

NAC proteins are plant-specific TFs that have been shown to function in abiotic stress responses (Nakashima et al., 2014: Puranik et al., 2012). To investigate the responses of NAC genes to drought stress, we investigated the expression profiles of NAC genes in seedlings and expressed the results as fold changes with respect to the controls. During drought stress NACs belonging to Group V NACs such as AdNAC32, AdNAC36, AdNAC38, AiNAC24, AiNAC32, AiNAC35 and AiNAC37 were found to be up regulated by 0.68, 1.45, 0.85, 0.75, 2.4, 2.49 and 2.76 folds respectively. ANAC069 belonging to the same group encodes a membrane-bound NAC protein that integrates auxin and salt signals to regulate seed germination in Arabidopsis. In Group VI, AdNAC5, AdNAC6, AdNAC12, AdNAC15, AdNAC21, AdNAC22, AdNAC24, AdNAC29, AdNAC35 were induced by 4.06, 1.3, 2.01, 2.84, 4.01, 0.51, 2.03, 2.43 and 0.71 folds respectively (Fig. 5 & 6). During high temperature, 48 genes were up-regulated and among them AdNAC7, 22, 32, AiNAC5, 6, 21 were found to be induced by 4.1, 2.1, 3.01, 2.11, 2.52, 2.59 folds respectively. The other upregulated genes showed fold change between 1 and 3. All the other genes were down regulated with the fold changes ranging between 0.5 to 1 (Fig7 & 8). AdNAC21 and AiNAC3 showed increased expression under both drought and high temperature stress.

DISCUSSION

The plant-specific NAC transcription factors (TFs) play important roles in regulation of diverse biological processes, including development, growth, cell division and responses to environmental stimuli. To cope with these stresses, plants have evolved a range of physiological and biochemical responses and a complex of signaling transduction pathways (You *et al.*, 2015). *AdNAC* and *AiNAC* genes were mapped to the Peanut genome according to their position information from Peanut Base. Among all, chromosome 3 contains the highest number of NACs (26%), while only one gene was located on chromosome 4 (0.026%). There was no positive correlation between the chromosome length and

the number of NAC genes. The ends of chromosome exhibited stronger synteny than the central regions of chromosomes (Nagy et al., 2012). It is well known that gene structural diversity is a possible mechanism for the evolution of multi-gene families. Investigation of gene structures reveals that the most closely related members in the same subfamilies shared similar exon/ intron structures in terms of intron number and exon length suggesting, these members may be evolved early and represent the ancestral form. All well-known NAC domain proteins bind specifically to the CATGTG motif of the promoter region (Tran et al., 2004) or act as a functional motif or activation domain (Oh et al., 2005). The relationship among the 76 Peanut NAC genes was investigated through constructing phylogenetic trees using Neighbour Joining method and the tree topology revealed several pairs of NAC proteins with a high degree of homology in the terminal nodes of each subfamily. According to Fig. 1, 76 NAC genes formed 9 clades and they were designated groups I to IX, the largest group was Group III which has 17 members. Several putative trans-membrane helices have been identified in other plant species such as Chickpea (Ha et al., 2014), Glycine max (Le et al., 2011), Arabidopsis (Kim et al., 2010), Rice (Kim et al., 2007), Maize (Shiriga et al., 2014), Potato (Singh et al., 2013), Foxtail millet (Puranik et al., 2013), Chinese cabbage (Liu et al., 2014) and Tomato (Kou et al., 2014). Out of 11 putative GmNTLs of soybean and 08 CaNTLs of Chickpea, 2 and 4 members possess two TMHs respectively whereas all the NTLs predicted in other plant species possess only one TMH, suggesting that the existence of doubled TMHs might be specific to leguminous plants. A phylogenetic tree constructed from the NTLs from Peanut, Arabidopsis (NTLs/ANACs) and rice (OsNTLs/ONACs) indicated that the Peanut NTLs were scattered into 4 major groups (Additional Resource 4B). The membrane bound TF can immediately regulate the downstream genes upon stress perception and activation. In Arabidopsis a membrane bound NAC protein, NTL6, has been to shown to get activated upon cold stress as the membrane fluidity changes and induces the expression of pathogenesis related proteins. In addition, the plant hormone ABA also activates the NTL6 (Seo, Park, 2010), thus indicating the involvement in biotic and abiotic stress responses. Membrane bound NAC proteins have been implicated as major players in biotic and abiotic stress response affects major physiological processes like flowering (Kim et al., 2007), seed germination (Kim et al., 2008), leaf senescence (Lee et al., 2012) and also cell division (Kim et al., 2006). Considering the varied functions of membrane bound NAC genes in crops, the identification of four membrane bound NAC genes would be useful in understanding their specific function in Peanut. Gene ontology annotation reveals that, a majority of these proteins were predicted to be involved in response to stress as well as cellular, metabolic and biosynthetic processes. The molecular functions of these proteins corresponded to transcription regulator activity. Further, cellular component analysis revealed the localization of these gene products in nucleus. Multiple sequence alignment and identification of conserved motifs using MEME tool indicates that most of the NAC proteins possessed A to E subdomains in the N termini that conferred the DNA-binding activities. The motif composition of these NAC sequences may provide clues for further functional analysis of these TFs. However, the biological significance of most of the putative motifs remains to be elucidated.

Several reports demonstrated that NAC genes were involved in regulating plant development at different growth stages causing us to further associate the biological functions of NAC genes (Wang et al., 2013). In Arabidopsis, ANAC002/ ATAF1 was induced by longterm treatment with ABA and/ or during age-dependent senescence. ANAC019, ANAC055, and ANAC072 in Arabidopsis showed up-regulation at transcription levels after drought, high salinity and abscisic acid (ABA) treatments, and those over-expression results in increased tolerance to drought (Tran et al., 2004). In Glycine max, GmNAC2, GmNAC3 and GmNAC4 were strongly induced by osmotic stress. GmNAC3 and GmNAC4 were also induced by ABA, JA and salinity but differed in their response to cold (Guilherme et al., 2009). In addition, GmNAC2-overexpressing tobacco lines were developed and found to be hypersensitive to drought, high salinity, and cold stress indicating GmNAC2 functions as a negative regulator during

abiotic stress, and participates in ROS signaling pathways through modulation of the expression of genes related to ROS-scavenging (Jin et al., 2013). TaNAC2L over-expression activated the expression of heat-related genes in the transgenic Arabidopsis, suggesting that TaNAC2L may improve heat tolerance by regulating the expression of stress-responsive genes (Guo et al., 2015). In Rice, SNAC3 was ubiquitously expressed and its transcript level was induced by drought, high temperature, salinity stress, and abscisic acid (ABA) treatment. Over-expression of SNAC3 in rice resulted in enhanced tolerance to high temperature, drought, and oxidative stress caused by methyl viologen (MV), whereas suppression of SNAC3 by RNAi resulted in increased sensitivity to these stresses (Fang et al., 2015). AdNAC21 and AiNAC3 were found to be upregulated under both drought and high temperature stress, suggesting these genes may be positive regulators of abiotic stress responses in Peanut. Overall, qRT-PCR analysis demonstrated that all the genes displayed variations in their expression behavior in response to drought and high temperature stress, suggesting these genes may be involved in regulation of stress responsive genes and further characterization will help in understanding their role in imparting abiotic stress tolerance in Peanut.

CONCLUSIONS

The NAC TFs has been proposed as important arbitrators of various plant processes and have been subjected to intensive characterization, especially in well-known model plants. Our study to identify and characterize NAC TFs in Peanut genome using genome-wide survey, expression analysis coupled with molecular tools provides foundation of our understanding of The their regulatory roles. comprehensive genome-wide analysis led to identification of 76 NAC TF genes. A uniform nomenclature was provided to the identified genes and proteins, followed by their comparative phylogenetic analysis with Arabidopsis and Glycine max NAC TFs. Functional conservation within a sub-family and serves as an initial platform in facilitating a better understanding of the structure-function relationship between individual members. The variability in gene expression patterns implies that NACs may regulate a complex web of pathways to perform different physiological functions for acclimatizing towards multiple challenges. This understanding will prove useful in improving drought and high temperature tolerance since these differentially expressed genes are probably involved in abiotic tolerance in Peanut. Thus, the analysis provides preliminary indications of putative function of several Peanut NAC genes, which would help in channelizing directional efforts for their functional characterization.

CONFLICTS OF INTEREST

The authors declare that they have no potential conflicts of interest.

ACKNOWLEDGEMENT

This work was supported by SERB (Reference no: SB/EMEQ- 141/2013), New Delhi, India

REFERENCES

- Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M (1997) Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. *Plant Cell*, 9, 841-857
- Aslam, M., Grover, A., Sinha, V. B., Fakher, B., Pande, V., Yadav, P. V., ... & Ahmed, Z. (2012). Isolation and characterization of cold responsive NAC gene from Lepidium latifolium. *Molecular biology reports*, 39, 9629-9638.
- Bailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., ... & Noble, W. S. (2009). MEME SUITE: tools for motif discovery and searching. *Nucleic acids research*, 37(suppl_2), W202-W208.
- Bertiol DJ, Seijo G, Freitas FO, Valls JFM, Leal-Bertioli SCM, and Moretzsohn MC (2011) An overview of peanut and its wild relatives. *Plant Genet. Resour.*, C 9,134-149.
- Chen Q, Wang Q, Xiong L, Lou Z (2011) A structural view of the conserved domain of rice stress-responsive NAC1. *Protein Cell* 2: 55-63
- Fang, Y., Liao, K., Du, H., Xu, Y., Song, H., Li, X., & Xiong, L. (2015). A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen

species in rice. *Journal of experimental botany*, 66(21), 6803-6817.

- Greve K, La Cour T, Jensen MK, Poulsen FM, Skriver K
 (2003) Interactions between plant RING-H2 and plant-specific NAC (NAM/ATAF1/2/CUC2) proteins:
 RING-H2 molecular specificity and cellular localization. *Biochem J*, 371, 97-108
- Guilherme L, Pinheiro, Carolina S, Marques et al, (2009) Complete inventory of soybean NAC transcription factors: Sequence conservation and expression analysis uncover their distinct roles in stress response. *Gene* 444 (1-2) 1 10-23,
- Guo W, Zhang J, Zhang N, et al (2015) The Wheat NAC Transcription Factor TaNAC2L Is Regulated at the Transcriptional and Post-Translational Levels and Promotes Heat Stress Tolerance in Transgenic Arabidopsis. *PLoS ONE* 10(8):e0135667.
- Guo Y, Gan S (2006) AtNAP, a NAC family transcription factor, has an important role in leaf senescence. *Plant J,* 46, 601-612
- Ha, C. V., Nasr Esfahani, M., Watanabe, Y., Tran, U. T., Sulieman, S., Mochida, K., ... & Tran, L. S. P. (2014). Genome-wide identification and expression analysis of the CaNAC family members in chickpea during development, dehydration and ABA treatments. *PLoS One*, 9(12), e114107..
- Hall TA (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. *Nucl. Acids. Symp. Ser.*41, 95-98
- He XJ, Mu RL, Cao WH, Zhang ZG, Zhang JS, Chen SY (2005) AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. *Plant J*, 44:903-916
- Hobert O (2008) Gene regulation by transcription factors and microRNAs. *Science* 319: 1785-1786
- Jensen MK, Kjaersgaard T, Nielsen MM, Galberg P, Petersen K, O'Shea C, *et al.* (2010) The Arabidopsis thaliana NAC transcription factor family: structurefunction relationships and determinants of ANAC019 stress signaling. *Biochem. J.* 426, 183-196

- Jeong JS et al (2010) Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. *Plant Physiol*, 153, 185-197
- Jin, H., Huang, F., Cheng, H., Song, H., & Yu, D. (2013). Overexpression of the GmNAC2 gene, an NAC transcription factor, reduces abiotic stress tolerance in tobacco. *Plant Molecular Biology Reporter*, 31, 435-442.
- Kim SG, Lee AK, Yoon HK, Park CM (2008) A membrane-bound NAC transcription factor NTL8 regulates gibberellic acid-mediated salt signaling in Arabidopsis seed germination. *Plant J.* 55, 77-88
- Kim SG, Lee S, Seo PJ, Kim SK, Kim JK, *et al.* (2010) Genome-scale screening and molecular characterization of membrane-bound transcription factors in Arabidopsis and rice. *Genomics* 95, 56-65
- Kim SY, Kim SG, Kim YS, Seo PJ, Bae M, et al. (2007) Exploring membrane-associated NAC transcription factors in Arabidopsis: implications for membrane biology in genome regulation. *Nucleic Acids Res.* 35, 203-213
- Kim YS, Kim SG, Park JE, Park HY, Lim MH, Chua NH, Park CM (2006) A membrane-bound NAC transcription factor regulates cell division in Arabidopsis. *Plant Cell*, 18, 3132-3144
- Kim, S. G., Lee, S., Seo, P. J., Kim, S. K., Kim, J. K., & Park, C. M. (2010). Genome-scale screening and molecular characterization of membrane-bound transcription factors in Arabidopsis and rice. *Genomics*, 95(1), 56-65.
- Kochert G, Stalker H, Gimenes M, Galgaro M, Lopes C, and Moore K (1996) RFLP and cytogenetic evidence on the origin and evolution of allotetraploid domesticated peanut, Arachis hypogaea (Leguminosae). *Am. J. Bot.* 83, 1282-1291
- Kou XH, Wang S, Wu MS, Guo RZ, Xue ZH, et al. (2014) Molecular characterization and expression analysis of NAC family transcription factors in tomato. *Plant Mol Biol Rep.* 32, 501-516
- Le DT, Nishiyama R, Watanabe Y, Mochida K, Yamaguchi-Shinozaki K, *et al.* (2011) Genome-wide survey and expression analysis of the plant-specific

NAC transcription factor family in soybean during development and dehydration stress. *DNA Res.* 18, 263-276

- Lee S, Seo PJ, Lee HJ, Park CM (2012) A NAC transcription factor NTL4 promotes reactive oxygen species production during drought-induced leaf senescence in Arabidopsis. *Plant J*, 70: 831-844
- Liu T, Song X, Duan W, Huang Z, Liu G, *et al.* (2014) Genome-wide analysis and expression patterns of NAC transcription factor family under different developmental stages and abiotic stresses in Chinese cabbage. *Plant Mol Biol Rep*, 32, 1041-1056
- Mao C., Ding W., Wu Y., Yu J., He X., Shou H., & Wu P. (2007). Overexpression of a NAC-domain protein promotes shoot branching in rice. *The New phytologist*, 176(2), 288–298.
- Nagy ED, Guo Y, Tang S, Bowers JE, Okashah RA, Taylor CA, et al (2012) A high-density genetic map of *Arachis duranensis*, a diploid ancestor of cultivated peanut. *BMC Genomics* 13, 469.
- Nakashima K, Yamaguchi-Shinozaki K & Shinozaki K (2014) The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. *Frontiers in Plant Science*, *5*, 170.
- Nuruzzaman, M., Sharoni, A. M., & Kikuchi, S. (2013). Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. *Frontiers in microbiology*, 4, 248.
- Oh SK, Lee S, Yu SH, Choi D (2005) Expression of a novel NAC domain-containing transcription factor (CaNAC1) is preferentially associated with incompatible interactions between chili pepper and pathogens. *Planta*, 222, 876-887
- Olsen AN, Ernst HA, Leggio LL, Skriver K (2005) NAC transcription factors: structurally distinct, functionally diverse. *Trends Plant Sci*, 10, 79-87
- Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, *et al.* (2003) Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. *DNA Res*, 10, 239-247

- Puranik S, Sahu PP, Mandal SN, B VS, Parida SK, et al.
 (2013) Comprehensive genome-wide survey, genomic constitution and expression profiling of the NAC transcription factor family in foxtail millet (Setaria italica L.). *PLoS One*, 8, e64594
- Puranik S, Sahu PP, Srivastava PS, Prasad M (2012) NAC proteins: regulation and role in stress tolerance. *Trends Plant Sci*, 17, 369-381
- Ramos ML, Fleming G, Chu Y, Akiyama Y, Gallo M and Ozias-Akins P (2006) Chromosomal and phylogenetic context for conglutin genes in *Arachis* based on genomic sequence. *Mol.Genet. Genomics*, 275, 578-592.
- Sablowski RWM, Meyerowitz EM (1998) A homolog of no apical meristem is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. *Cell*, 92, 93-103
- Seo PJ, Park CM (2010) A membrane-bound NAC transcription factor as an integrator of biotic and abiotic stress signals. *Plant Signal Behav*, 5(5), 481-483
- Shiriga K, Sharma R, Kumar K, Yadav SK, Hossaina F, et al. (2014) Genome-wide identification and expression pattern of drought-responsive members of the NAC family in maize. *Meta Gene*, 2, 407-417
- Singh AK, Sharma V, Pal AK, Acharya V, Ahuja PS (2013) Genome-wide organization and expression profiling of the NAC transcription factor family in potato (Solanum tuberosum L.). *DNA Res*, 20, 403-423
- Tamura K, Stecher G, Peterson D, Filipski A & Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. *Molecular Biology and Evolution*, 30(12), 2725-2729.

- Tran LS, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, *et al.* (2004) Isolation and functional analysis of Arabidopsis stress inducible NAC transcription factors that bind to a drought responsive cis-element in the *early responsive to dehydration stress 1* promoter. *Plant Cell.* 16, 2481-2498
- Wang, N., Zheng, Y., Xin, H., Fang, L., & Li, S. (2013). Comprehensive analysis of NAC domain transcription factor gene family in Vitis vinifera. *Plant cell reports*, 32, 61-75.
- Wang, X. E., Basnayake, B. V. S., Zhang, H., Li, G., Li, W., Virk, N., ... & Song, F. (2009). The Arabidopsis ATAF1, a NAC transcription factor, is a negative regulator of defense responses against necrotrophic fungal and bacterial pathogens. *Molecular Plant-Microbe Interactions*, 22(10), 1227-1238.
- Wu, Z., Xu, X., Xiong, W., Wu, P., Chen, Y., Li, M., ... & Jiang, H. (2015). Genome-wide analysis of the NAC gene family in physic nut (Jatropha curcas L.). *PLoS One*, 10(6), e0131890.
- You J, Zhang L, Song B, Qi X, Chan Z (2015) Systematic Analysis and Identification of Stress-Responsive Genes of the NAC Gene Family in Brachypodium distachyon. *PLoS ONE*, 10(3), e0122027.
- Zheng X, Chen B, Lu G, Han B (2009) Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. *Biochem Bioph Res Com*, 379, 985-989

|--|

SI No	Gene Name	Forward (5'- 3')	Reverse (5'- 3')	Product Size
1	AdNAC1	ATGGCCTCAAATCAAACTGG	TCCTTGCATGAAGGGAAGTT	149
2	AdNAC2	ACTTCGGCTGCTACTCCTCA	ATCTGGTTGTTGGTGCATGA	150
3	AdNAC3	CCCAACATCCGACACATACA	CGTCATCTTGGGCAACACTA	152
4	AdNAC4	AGGAGCACAGGCTGAAGAAG	GATGGCACCAACAATGTCAC	151
5	AdNAC5	ATAGCAGCAGCTGGTTTGGT	ACATCAGGGTGGCAAGGTAG	151
6	AdNAC6	CTGGGTTTTGCTTCTCTCA	CCACTTGAAAACGCCTTACC	151
7	AdNAC7	GAGTGACGACGTCGGGTTAT	GGCAAACGGTACTCGTTCAT	160
8	AdNAC8	CTGGGTTTCGGTTCTATCCA	GCATTGAGCTTAGCCACCTC	154
9	AdNAC9	TCCAGGATTCAGGTTTCACC	TCCCACTTTAGCCAATCCTG	154
10	AdNAC10	CTCTTATACACCCGCGCTTC	TTCACATGATCCAACCTCCA	145
11	AdNAC11	CGGATTGGCTAGGTTTACCA	CCCATCTTCACCTTCAATGG	149
12	AdNAC12	GCTATTGGAAGGCAACAGGA	TTCATGCAAGACCCAGTGAG	149
13	AdNAC13	AAAGGTTCACACCGACCAAG	GGTCTTCTCGGGCTTCTTCT	151
14	AdNAC14	GTTTCAAGCCAAAGCAGACC	CCTGTAAACCGGTGGTGTCT	145
15	AdNAC15	CGATCCATGGGATTTACCAG	AGTTGCGATGTGTTTGTCCA	148
16	AdNAC16	AAGTCTGAGCCTTGGGACCT	GTCTTTGCCTGTGGTCTTCC	147
17	AdNAC17	ACCGGTCGCAAAACTAAATG	CGTCGATCAAATGCTCTGAA	152
18	AdNAC18	AACCCCAGGCTACAATTTCC	AGCCATTGCAGAGAGGAAGA	150
19	AdNAC19	CCACCCAACAGATGAAGAGC	ATTCCTTCTCCCCCATTGAT	152
20	AdNAC20	CACGGGCTCTTCATCTCTTC	ATAGGGCTTGTTTGGGTGTG	144
21	AdNAC21	TCCACCAGGTTTCAGATTCC	AAGCCTTCTTTGGCAAATCC	149
22	AdNAC22	ACGACCGAAGGAAGGAAAGT	ACAGAACCCAATCGTCAAGC	157
23	AdNAC23	AGGTCTGAGCCTTGGGATTT	TGTCTTTTCCAGTGGCCTTC	148
24	AdNAC24	GAGGCTTGATGATTGGGTGT	TTGGTCTCATGCTCATGCTC	153
25	AdNAC25	TCTACGCATTGAAAGCAACG	CTCTCCCTTTTGCAGACAGC	150
26	AdNAC26	ATTCTCGTACCCCGAGGATT	ACCGAAACCCCCAAAAATAG	149
27	AdNAC27	TTGGGATGATGATGATGACG	CCCGACTCACATGAAACAGA	153
28	AdNAC28	ATCACTGCCACCTGGATTTC		139
29	AdNAC29	GCTATIGGAAGGCAACAGGA		149
30	AdNAC30			152
22	AdNAC31			147
22				140
33				150
35				147
36				147
37			GGCCTTTTCCACCTCTTCTT	145
38	AdNAC38			150
39	AiNAC1	ATGGCCTCAAATCAAACTGG		149
40	AiNAC2	GCTAAGCGGTGTGAGTAGGG		147
41	AiNAC3	TGGAGTGAAGAAGCCCTTG	GCATAGCACCCACTCATCAA	151
42	AiNAC4	ATAGCAGCAGCTGGTTTCGT	ACATCAGGGTGGCAAGGTAG	148
43	AiNAC5	ТССАТССАТААССТСССААА	AAGGGAGGTAGACCGGAAGA	152
44	AiNAC6	GCTATTGGAAGGCAACAGGA	TTCATGCAAGACCCAGTGAG	149
45	AiNAC7	GCATCAGAAGAGGCCTTCAC	GATTCGGTGGTGATTCCACT	149
46	AiNAC8	TTGGAAAGCCACTGGAAAAG	ACTCGTGCATAACCCAATCC	149
47	AiNAC9	CCACCCAACAGATGAAGAGC	CATTCCTTCTCACCCATGCT	150
48	AiNAC10	GAACAGAGCGACGACAAGTG	TGATCCAGCCAGTTTTGATG	149
49	AiNAC11	AACCCCAGGCTACAATTTCC	AGCCATTGCAGAGAGGAAGA	150
50	AiNAC12	TAGGTTCACCATGCCTCCAT	GCAACCGAAAGAATTTCCTG	150
51	AiNAC13	TCCACCAGGTTTCAGATTCC	AAGCCTTCTTTGGCAAATCC	149
52	AiNAC14	ACCGGTCGCAAAACTAAATG	CGTCGATCAAATGCTCTGAA	152
53	AiNAC15	CTTGCCAGGAGTAAGCAAGG	ACTGGTCTGGTCTTGCCTGT	153
54	AINAC16	GCIGCGIACAAACAGAGCAA		145
55	AINAC1/			149
56	AINAC18			153
5/	AINAC19			148
50				140
- 59		CITCITCAGCITCCGTGACC		149

	1			
60	AiNAC22	TTCCAATGATCCACAAGCAA	GGCCGTTGAGTTGTTGAGTT	148
61	AiNAC23	GCTTCTGATTCATGGGCAAT	GGGTGTTGGTGTTGTTGATG	152
62	AiNAC24	TGAACCATGCAGCGAAATTA	AGGCCACTGAAGATCGTTGT	152
63	AiNAC25	TTAACGGTGTTGGGGGAGAAC	CCGGCAAAGAACATAAGAGG	152
64	AiNAC26	TAGGTTCACCATGCCTCCAT	GCAACCGAAAGAATTTCCTG	150
65	AiNAC27	GTCAACGAGATGGAACAGCA	AGCGACTACCCAACATCCAC	151
66	AiNAC28	TCTACGCATTGAAAGCAACG	CTCTCCCTTTTGCAGACAGC	150
67	AiNAC29	AAGCAAATTCTAGCCGTGGA	TGCAGAATGAAGCTGGAGTG	149
68	AiNAC30	GCTTCTGATTCATGGGCAAT	GGGTGTTGGTGTTGTTGATG	152
69	AiNAC31	TCCCAAGCCTAGAGAGTCCA	CACATGTGAATGACCCTTCG	147
70	AiNAC32	GCCGTGTTCCTAATGGTGTC	CACAGGCTTGTGCATCAGTT	150
71	AiNAC33	ACGTGGGAGAGTAGGGAGGT	GTGATGAACGTGTCCTGGTG	158
72	AiNAC34	AAAGGTTCACACCGACCAAG	GGTCTTCTCGGGCTTCTTCT	151
73	AiNAC35	CTTGGGATTTGCCTGAAAAA	TCTGTCGCTCATTTCCTGTG	147
74	AiNAC36	ACCAAAAAGCACCATTCCAC	TGCCACTCTTGTCAAAGACG	151
75	AiNAC37	GAGAATACGGTTGGCACGAT	ACTCTCACCAGCAGCAAGGT	148
76	AiNAC38	GCCTCCTCTTTGCTTGTTTG	TTGTCCACTACCTGCCATCA	151

Additional Resource 2: NAC genes identified in Peanut, Chromosomal location, protein features and its localization prediction

Protein	Chromoso	Chromosomal location		Deduced polypeptide			Subcellular localization	
	ine no	Start	End	L (aa)	pl	MW (kDa)	PSORT	CELLO
AdNAC1	A3	11454354	11455035	345	0.83	39826.91	Nucleus	Nucleus
AdNAC2	A5	108981314	108981928	341	6.3	39322.81	Nucleus	Nucleus
AdNAC3	A6	80396908	80399152	200	4.43	21895.11	Nucleus	Nucleus
AdNAC4	A10	66153332	66154679	220	4.47	23646.1	Nucleus	Nucleus
AdNAC5	A3	129693299	129694115	195	4.77	22268.5	Nucleus	Nucleus
AdNAC6	A10	5998028	5999322	185	4.83	21399.83	Nucleus	Nucleus
AdNAC7	A1	100229992	100230922	396	6.86	45253.17	Nucleus	Nucleus
AdNAC8	A2	14425971	14431568	303	6.57	39680.56	Nucleus	Nucleus
AdNAC9	A3	7358062	7359492	315	6.62	36289.21	Cytoplasm	Nucleus
AdNAC10	A3	11724750	11725893	384	7.33	43616.33	Nucleus	Nucleus
AdNAC11	A3	20188288	20192205	286	8.19	32587.37	Nucleus	Nucleus
AdNAC12	A3	106298658	106299356	211	9.45	23638.54	Nucleus	Nucleus
AdNAC13	A3	119828375	119830946	333	8.67	37720.54	Cytoplasm	Nucleus
AdNAC14	A5	5429578	5430695	633	6.34	71663.95	Nucleus	Nucleus
AdNAC15	A4	123543593	123544127	274	9.46	31056.99	Nucleus	Nucleus
AdNAC16	A5	93368779	93370121	362	7.21	41028.72	Nucleus	Nucleus
AdNAC17	A6	71790277	71790797	158	7.82	18406.9	Nucleus	Nucleus
AdNAC18	A6	99555217	99557900	398	4.84	44766.62	Nucleus	Nucleus
AdNAC19	A7	4217527	4220338	367	6.19	42710.4	Nucleus	Nucleus
AdNAC20	A7	34924711	34930461	322	7.57	36404.96	Nucleus	Nucleus
AdNAC21	A8	26150292	26151482	360	5.95	41040.72	Nucleus	Nucleus
AdNAC22	A8	36880883	36881761	349	8.2	39130.85	Nucleus	Nucleus
AdNAC23	A8	46083457	46084425	321	8.99	36330.98	Nucleus	Nucleus
AdNAC24	A8	49202615	49203371	304	6.42	35117.57	Nucleus	Nucleus
AdNAC25	A9	104514590	104515729	513	6.85	56824.02	Nucleus	Nucleus
AdNAC26	A9	118019296	118020327	551	4.58	62431.12	Nucleus	Nucleus
AdNAC27	A10	95255804	95258481	367	4.75	40434.33	Cytoplasm	Nucleus
AdNAC28	A1	27306712	27309985	331	4.82	37221.31	Nucleus	Nucleus
AdNAC29	A3	106298424	106299692	211	9.45	23638.54	Nucleus	Nucleus
AdNAC30	A2	4630146	4632702	463	6.05	51131.07	Nucleus	Nucleus
AdNAC31	A5	11520982	11522773	370	5.72	42053.82	Nucleus	Nucleus
AdNAC32	A1	17654261	17657374	278	4.95	32114.67	Nucleus	Nucleus
AdNAC33	A9	120443393	120445227	417	4.99	46396.41	Nucleus	Nucleus
AdNAC34	A7	46474184	46478634	350	6.93	40443.03	Nucleus	Nucleus
AdNAC35	A3	110320453	110321103	260	7.71	29831.7	Nucleus	Nucleus
AdNAC36	A10	66508937	66511725	592	5.52	66957.8	Nucleus	Nucleus
AdNAC37	A6	8759634	8760991	275	6.6	30814.72	Cytoplasm	Nucleus
AdNAC38	A5	82433773	82435384	363	9.35	40163.1	Nucleus	Nucleus

AiNAC1	B3	14030606	14031364	345	5.82	39895.92	Nucleus	Nucleus
AiNAC2	B3	3397200	3398172	159	7.93	17385.82	Nucleus	Nucleus
AiNAC3	B6	34263503	34264948	339	6.33	38553.64	Nucleus	Nucleus
AiNAC4	B3	130519432	130520236	194	4.7	22170.39	Nucleus	Nucleus
AiNAC5	B1	114413189	114413851	330	8.16	37207.1	Nucleus	Nucleus
AiNAC6	B3	107857973	107858464	211	9.45	23678.6	Nucleus	Nucleus
AiNAC7	B4	133562785	133563191	275	9.21	31227.2	Nucleus	Nucleus
AiNAC8	B5	5593767	5594848	352	5.26	39942.63	Nucleus	Nucleus
AiNAC9	B5	134972984	134974696	363	7.21	41082.72	Nucleus	Nucleus
AiNAC10	B6	22593847	22597864	277	6.7	31980.62	Nucleus	Nucleus
AiNAC11	B6	123070548	123071415	398	4.87	44763.58	Nucleus	Nucleus
AiNAC12	B7	16494646	16499500	678	5.51	77254.89	Nucleus	Nucleus
AiNAC13	B8	3509212	3510399	360	5.95	41047.75	Nucleus	Nucleus
AiNAC14	B8	5732628	5733422	264	7.82	28212.34	Nucleus	Nucleus
AiNAC15	B8	10780723	10782775	294	8.82	33464.63	Nucleus	Nucleus
AiNAC16	B8	70326651	70327366	216	5.61	24401.27	Cytoplasm	Nucleus
AiNAC17	B9	138001768	138002822	559	4.57	63262.12	Cytoplasm	Nucleus
AiNAC18	B10	4890841	4891946	345	6.51	39364.7	Nucleus	Nucleus
AiNAC19	B10	107295672	107296861	367	4.72	40432.26	Cytoplasm	Nucleus
AiNAC20	B1	33384497	33387453	309	5.37	34992.16	Nucleus	Nucleus
AiNAC21	B2	17820383	17822891	307	6.59	34673.92	Nucleus	Nucleus
AiNAC22	B3	14391486	14393315	375	7.28	42546.28	Nucleus	Nucleus
AiNAC23	B3	127136415	127138105	405	6.86	45210.02	Nucleus	Nucleus
AiNAC24	B5	15820770	15822869	289	5.65	33148.19	Nucleus	Nucleus
AiNAC25	B6	135601579	135604741	308	5.61	34840.84	Nucleus	Nucleus
AiNAC26	B7	16494344	16499499	367	6.19	42710.4	Nucleus	Nucleus
AiNAC27	B7	118782790	118785019	301	6.54	33737.99	Nucleus	Nucleus
AiNAC28	B9	127070525	127076074	512	6.85	56758.9	Nucleus	Nucleus
AiNAC29	B9	127100455	127103707	583	4.67	65014.53	Cytoplasm	Nucleus
AiNAC30	B10	126350924	126352571	283	5.87	32172.67	Cytoplasm	Nucleus
AiNAC31	B2	5953378	5956019	577	8.62	64412.11	Nucleus	Nucleus
AiNAC32	B2	6650206	6654171	316	5.08	36332.42	Nucleus	Nucleus
AiNAC33	B3	111878870	111880200	260	7.09	29859.71	Nucleus	Nucleus
AiNAC34	B3	120758782	120762349	330	8.47	37327.96	Nucleus	Nucleus
AiNAC35	B5	144854743	144856564	306	5.48	34445.9	Nucleus	Nucleus
AiNAC36	B6	7136978	7138554	275	6.73	30990.83	Nucleus	Cytoplasm
AiNAC37	B7	29146175	29149324	698	4.74	77755.42	Nucleus	Nucleus
AiNAC38	B8	105359002	105361311	350	6.73	40504.11	Nucleus	Nucleus

Additional Resource 3: Multiple alignment of 76 NACs of Peanut, Arabidopsis and Glycine max. Conserved NAC domain and subdomains (A-E) are indicated by thick blue line and black thin black lines, respectively, above the sequences. The putative nuclear localization signal (NLS) is shown by a black line below the sequence.

Unraveling NAC family transcription factors...

Suchithra et al.

Additional Resource 4

A. Unrooted phylogenetic tree constructed using the neighbor-joining (NJ) method, and the bootstrap test was carried out with 1,000 iterations representing the relationships between AdNACs and AiNACs

B. Phylogenetic tree of membrane-bound NACs from Peanut (AdNTLs & AiNTLs/ AdNACs & AiNACs), Arabidopsis (NTLs/ANACs) and rice (OsNTLs/ONACs). The unrooted phylogenetic tree was constructed using the full protein sequences.

C. Conserved motif logos identified using MEME tool

D. Functional protein association network of Peanut NAC proteins in Arabidopsis

