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Barley is one of the most important cereal crops grown worldwide. Spot blotch caused by the
hemibiotrophic  fungus  Cochliobolus  sativus,  is  a  destructive  disease  of  barley  leading  to
significant yield losses globally. Barley plants have evolved complex and orchestrated defense
mechanisms  to  protect  themselves  towards  this  disease.  Therefore,  understanding  the
molecular basis of barley -  C. sativus interaction is crucial to efficiently breed for durable and
long lasting resistance. A number of  pathogenesis-related proteins (PRs) genes have been
identified  and  studied.  Overexpression  of  PR genes  (chitinase,  glucanase  and  thaumatin)
individually or in combination has significantly uplifted the level of defense response in barley
plants against C. sativus pathogen. However, the detailed comprehension of signaling pathways
that regulates the expression of these PRs is critical for improving crop plants to the pathogen
challenge, which is the future theme of plant stress biology. Here, we summarize the advances
in studies on interactions between barley and the C. sativus pathogen through these PR genes,
by reviewing a comprehensive body of research on their interaction and the advances recently
made.

Key words:  Barley, Cochliobolus sativus, defense signaling, PR proteins 

JOURNAL OF STRESS PHYSIOLOGY & BIOCHEMISTRY Vol. 19  No. 1  2023

mailto:ascientific@aec.org.sy


Pathogenesis-Related Proteins Dynamics...

Barley (Hordeum vulgare L.), a member of the grass

family Poaceae, is one of the most important crops from

an  economic  point  of  view,  as  it  is  widely  used  for

breweries,  animal  feeds  and  human  food,  and

successfully grown under a wide range of environments.

According to USDA report, the global barley production

in 2021/2022 amounted to about 145.10 million metric

tons (USDA 2022). Nevertheless, cereals losses due to

fungal  diseases  continue  to  pose  a  huge  threat  to

agricultural food and impact economic decisions as well

as  practical  developments.  Using  plant  genotypes

having genetic resistance is considered as an efficient

and  environmentally  suitable  approach  to  alleviate

losses  caused  by  the  fungal  pathogens  (Jeger  et  al.,

2021).  However,  current  technologies  for  molecular

genetics  of  barley  resistance  towards  diseases  are

based  on  the  over-expression  of  defense  signalling

genes in plant (Boccardo et al., 2019; Ali et al., 2022).

Cochliobolus sativus (Ito & Kurib.) Drechsl. ex Dast.

[anamorph:  Bipolaris  sorokiniana  (Sacc.  in  Sorok.)

Shoem.],  the  cause  of  spot  blotch  (SB),  is  an

economically  important  disease  of  wheat  and  barley

worldwide (Prasad et al., 2013; Rehman et al., 2020; Al-

Sadi 2021). The disease is prevalent in North America,

Latin America, North Africa, Asia and the Middle East, it

causes up to 16%–43% yield losses in warmer areas of

the world (Clark 1979;  Devi  et al., 2018;  Kumar  et al.,

2020). The Syrian SB isolates have shown a diversity of

virulence (Arabi and Jawhar 2004; Jawhar et al., 2017a;

Chen et al., 2022). Therefore, understanding barley-C.

sativus interaction  at  the  genetic  level  is  vital for

identifying and deploying SB resistance. 

Plants  are  constantly  exposed  to  pathogens  and

have developed complicated mechanisms to recognize

infection  and  trigger  orchestrated  defense  responses

including the generation of reactive oxygen species, the

biosynthesis  of  phytoalexins, cell  wall  cross-linking,

induction of defense enzymes, and the accumulation of

pathogenesis-related  proteins  (PRs)  (Juškyt  et  al.,

2022). PRs are a structurally diverse group of   proteins

induced  by  plants  as  a  defense response against  the

attacking fungal pathogens (Antoniw et al., 1980;  Alkan

et al., 2022). They are known to accumulate in plants

post  infection  by  various  pathogens  as  well  as  upon

exposed to certain abiotic stress conditions (van Loon et

al., 2006; Boccardo et al., 2019; Ali et al., 2018). 

Since the detection of PRs in 1970, 17 PR families

have been identified based on amino acid  sequences

and their biological activities (Kaur et al., 2017; Jo et al.,

2020; Anisimova  et  al., 2021).  The  majority  of  these

families were identified in tobacco but some others were

found in plant species, including monocotyledons such

as  barley  and wheat.  The exact  functions  of  different

PRs are not completely understood, but they are mainly

expressed  in  plants  as  glucanases,  chitinases  and

thaumatin-like proteins (GonzÁlez-Teuber  et al., 2010;

Farrakh  et  al., 2018;  Sharma  et  al., 2022).  Upon

pathogen challenge many PRs are located in plant cell

gaps  and  vacuoles  which  are  correspond  to  their

isoelectric points and the contact to stress. Their small

size 10–40 kDa leads to the accumulation in intracellular

and intercellular spaces (Jo et al., 2020).

This  review  provides  an  overview  of  our  current

knowledge on the barley-C. sativus interaction,  mainly

regarding  pathogenesis-related  proteins  alterations.

Understanding  the  molecular  basis  of  this interaction

would greatly facilitate the development of new control

strategies and the identification of C. sativus and barley

factors required for disease progression.

Infection biology

C. sativus survives as conidia on plant wastes in the

field as well as on seeds or in the soil as mycelium in

infected  plant  tissues.  The infection  starts  within  4  hr

with  conidia  germinating on the plant leaf,  forming an

appressorium after 8 hr, and penetrating the cuticle by

the hyphae during 12 hr. The fungus spreads into the

intercellular  space  of  the  mesophyll  and  its  hyphae

produce  latter  conidiophores,  which  emerge  via  the

stomata  carrying  new  conidia.  The  new  conidial

generation is created within 48h that makes the disease

highly epidemic with many infection cycles during one

growing  season  (Gupta  et  al., 2018;  Al-Sadi  et  al.,

2021).

C. sativus is well  known as a hemibiotroph fungus

since  it  has  both  biotrophic  and  necrotrophic  phases

(Kumar  et al., 2002;  Shao  et al., 2021).  It  starts as a
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biotroph and then switched to necrotrophic lifestyle. The

biotrophic phase is mostly confined to a single epidermal

cell  attacked  by  the  infection  hypha,  whereas  the

necrotrophic  phase  begins  after  infection  of  the

mesophyll  tissue  followed  by  host  cell  death  as  a

consequence  of  toxin  secretion  (Apoga  et  al., 2002;

Acharya et al., 2011). Helminthosporol is the major non-

specific  toxin  produced  by  C.  sativus  that  affects  the

permeability of the leaf cell  plasma membrane so that

the pathogen can nourish of the electrolytes leaked and

colonize the host plant tissue (Wisniewska et al., 1998;

Apoga  et al., 2002). Hence, barley plant has to deploy

different  defense  mechanisms against  pathogens  with

contrasting  lifestyles.  For  this,  in  depth  knowledge on

the  barley-C. sativus interaction at the genetic level  is

crucial.

Cell Death during C. sativus Infection

It is documented that the earliest defense responses

are  opening  ion  channels  through  the  leaf  plasma

membranes, induction of active oxygen species such as

O2
- and  H2O2,  and  phosphorylation  and

dephosphorylation  of  certain  proteins  (Doke  et  al.,

1996).  These  primary  reactions  are  necessary  for

beginning of the signaling network that further activate

the defense responses (Hammond-Kosack and Jones,

1996). Initial H2O2 accumulation in epidermal cell walls

under host control may restrict fungal access, whereas

high H2O2 accumulation in mesophyll  tissue during the

second stage results in a massive tissue collapse and

fungal colonization. Kumar et al. (2002) and Al-Daoude

et al. (2013; 2018) reported that H2O2 may play a dual

role in the barley–C. sativus  interaction. They reported

that   24  and  48  hours  post  inoculation,  H2O2

accumulation was detected in epidermal and mesophyll

cells  which  were  completely  stained  with  3,3-

diaminobenzadine  (DAB),  indicating  a  hypersensitive

reaction (HR) (Fig.1).

Defense responses in prepenetrated epidermal cells

included cell  wall  apposition  (CWA) formation,  HR,  or

both, and were found to be associated with failures in

fungal  penetration.  After  fungus  penetration,  defense

consisted of HR in epidermal cells may stop successful

infection,  linking  invasion  and  collapse  of  mesophyll

(Hückelhoven, 2007; Rodríguez-Decuadro et al., 2014).

On  the  other  hand,  comprehensive  sequencing  of

expressed sequence tags (ESTs) was used to supply a

global  picture  of  barley  genes  differentially  expressed

during HR of a barley resistant genotype to  C. sativus

(AL-Daoude et al., 2009;  Jawhar et al., 2017b).  These

methodologies have allowed the classification of genes

assumed  involved  in  barley  resistance  to  C.  sativus,

including  signaling,  transcription  factors,  defense,

hypersensitive  response,  phytohormones  pathways,

oxidative burst and secondary metabolites biosynthesis

(Fig. 2).

Barley Signaling Network

Barley responses to  C. sativus have been reported

to  be  highly  dependent  on  the  balanced  interplay

between  critical  phytohormones  which  may  act

differently  in  several  pathosystems  (Al-Daoude  et  al.,

2022; Yousaf et al., 2022). Some PRs are considered as

the signature genes of salicylic acid (SA) and jasmonic

acid (JA) pathways in model and many crop plants, in

which the biotrophic pathogen activates the SA pathway,

whereas  the  necrotrophic  pathogen  stimulates  the  JA

pathway (Ali et al., 2017) (Fig 3). 

Recently,  it  has  been  reported  that  SA  signaling

could  have an  important  role  in  defense mechanisms

against  C.  sativus disease  in  contrasting  with  JA

signaling,  however,  both  hormones  were  induced  in

response to the same isolate of  C. sativus in different

barley cultivars (Popova  et al., 2017; Al-Daoude et al.,

2022). In addition,  in  C. sativus-infected wheat leaves,

the  SA-regulated  genes  TaPAL,  TaPR1,  and  TaPR2

genes were expressed (Zhang, 2021). However, cross

talk  and  synergistic  effects  between  the  defense

pathways  mediated  by  SA  and  JA  during  different

pathogenic infections have been proposed (Schenk  et

al., 2000; Han and Kahmann 2019). Their pathways are

linked  with  enhanced  transcription  of  PRs  that  are

particularly  stimulated  both  around  infection  sites  and

systemically  (van  Loon  et  al., 2006;  Ali  et  al., 2018).

Several researches indicated that expressing SA and JA

signature genes or PR genes in plants lead to increase

the  resistance  to  different  pathogens  (Pieterse  et  al.,

2012;  Ali  et al., 2017;  Anisimova  et al., 2021; Castro-

Camba et al., 2022). 
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PRs  expression  in  resistant  and

susceptible barley genotypes

PRs are relevant elements of the defense response

machinery, many with antimicrobial functions, such as,

PR2 (β -1,  3-glucanase),  PR3 (chitinases)  and  PR5

(thaumatin-like) (Manandhar et al., 1999; Farrakh et al.,

2018; Sharma  et  al., 2022).  During  barley-C.  sativus

interaction increased expression of PR1, PR2, PR3 and

PR5 genes was recorded along with increasing SA and

JA levels (Al-Daoude  et al., 2019) (Fig 4 and 5). 

The  PR1 family  contains  the first  discovered  PRs,

but, no biochemical role is known for any of the PR-1

proteins (van Loon  et al., 2006; Mitsuhara  et al., 2008;

Fang  et al., 2019). The  PR2 proteins have functions in

catalyze  hydrolytic  cleavage  of  β -1,3-D-glucosidic

linkages in β -1,3-glucans, and it is supposed to operate

primarily on glucans of the fungal pathogen cell wall to

release  oligosaccharides  (Mauch  and  Staehelin  1989;

Boccardo et al., 2019, Anisimova et al., 2021). The plant

may then recognize these fragments as elicitors that use

to activate further defense responses.  Both  PR-2 and

PR-3 are likely to play double functions in plant defense

both directly by hydrolyzing structural components from

the cell walls of the pathogen and indirectly by releasing

elicitors that might intensify the plant defense response

(Stintzi  et al., 1993; Rebaque  et al., 2021).   The  PR3

proteins  hydrolyze  β  -1,  4-linkages  between  N-

acetylglucosamines of chitin, releasing oligosaccharides

from the pathogen cell walls. It has been proposed that

the thinning of the fungal cell walls by PR2 exposes the

chitin located in the internal parts of the wall, making it

available to chitinases to hydrolyze the fungal cell wall

and  release  elicitors  (Kombrink  and  Somssich  1997;

Boccardo et al., 2019).

Our works showed differential  PR1, PR2, PR3 and

PR5 expressions in barley leaves during the early stage

of C. sativus infection, before any visible symptoms are

apparent in the tissues (Arabi et al., 2015; Al-Daoude et

al., 2017).  However,  necrosis  appeared  after

approximately 36 hours of inoculation. The northern blot

analysis revealed a biphasic accumulation of PR1, PR3

and PR5 mRNA in leaves before these visible symptoms

(Santén 2007). On the other hand, Alkan et al. (2022)

reported  that  PR3,  PR5  and  PR10  were  strongly

increased  in  the  wheat  cultivars  resistance  pathways

after  C.  sativus infection.  Moreover,  Al-Daoude  et  al.

(2019) demonstrated that transcripts of the  PR1, PR2,

PR3 and  PR5 genes  were  accumulated  earlier  in

resistant barley leaf tissues upon challenge with either

the biotrophic or the necroptrophic pathogen C. sativus.

Importantly, some  PR genes were related with a multi-

gene  resistance  which  dispels  the  current  belief  that

similar  mechanisms  are  activated  in  response  to

pathogens with different lifestyle infection (Fig 5).

  

Figure  1. Localization of H2O2 (a) and SB symptoms (b) in tissues of susceptible barley cv.  WI 2291 48 hours post

inoculation with C. sativus. 
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Figure 2. Transcripts expression grouped by functions in resistant barley cultivar infected with C. sativus (Jawhar et al.,
2017).

Figure.  3. An  overview of  activation of  signaling cascades in  plants  after  biotrophic  and  necrtrophic  pathogenic
infection (Ali et al., 2017). 

Figure 4. Quantification of total salicylic acid in barley leaves of resistant ‘Banteng’ and susceptible ‘WI2291’ cultivars 6
days post inoculation with C. sativus. Error bars are representative of the standard error (Mean ± SD, n = 3).
Significance at *P < 0.05; **P <0.01 and ***P < 0.001 within each genotype during different periods comparing
with the control 
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Figure 5. Relative  expression  profiles  of  marker  genes  in  the  resistant  genotype  Banteng  and in  the  susceptible
genotype WI2291during the time course following infections with three diseases (Powdery mildew, net blotch
and spot blotch). Error bars are representative of the standard error (Mean ± SD, n = 3). Data are normalized to
Elongation factor 1α (EF-1α) gene expression level (to the calibrator, Control 0 h, taken as 0). (Al-Daoude et
al., 2019).
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CONCLUSION

This review summarizes the progress made to date

in the research of barley-C. sativus interactions through

PR alterations. Given the current availability of genomic

and EST data,  PR genes potentially involved in these

interactions have been identified, and it is expected to

provide  the  chance  to  raise  their  numbers  in  a  near

future,  permitting  subsequent  works  at  the  functional

genomics  level. However,  although  a  better

understanding of the barley resistance mechanisms has

been  achieved;  hard  work  still  lies  ahead  for  the

research society working on this resistance, regarding a

deep lack of information on resistance genes at different

levels from identification, function and regulation. 

It would be attractive to study in more details about

where and when different PRs are transcribed to better

understand how barley plants utilize and coordinate their

defense mechanisms towards C. sativus. Also, it would

be  valuable  to  know  if  the  pure  barley  PRs  have

antifungal  activity  against  C.  sativus,  separately  or  in

various combinations and also in more detailed studies

to see how this pathogen is affected. Since  C. sativus

secretes  the  toxin  prehelminthosporol  it  would  be  of

interest to see where it is recovered in the tissue, and if

it affects the barley response in terms of localization and

accumulation of different PRs. 
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