ORIGINAL ARTICLE

Genome-wide analysis of bHLH and bZIP Transcription factors and their temporal expression under abiotic stress conditions in Groundnut (*Arachis hypogaea* L.)

Suchithra B, Shafia Hoor F and Nagesh Babu R.*

¹ School of Sciences, Department of Chemistry & Biochemistry, Maharani Cluster University, Bengaluru - 560001, Karnataka, India

*E-Mail: nageshbabur@gmail.com

Received August 16, 2021

Groundnut (*Arachis hypogaea* L.), is an important subsistence oil yielding crop of the semi-arid tropics and often exposed to several environmental cues (high temperature, drought & heavy metal). Transcription factors can control the expression of many target genes through specific binding to the cis-acting elements in the promoters of the target genes. The basic leucine zipper (bZIP) and basic helix-loop-helix (bHLH) represents one of the largest as well as most diverse transcription factor (TFs) families. They are known to play role in both stress as well as in various plant developmental processes. In this study, a comprehensive phylogeny, chromosomal location, conserved motif identification and expression profiles under high temperature and drought stress. of bZIP and bhLH TF gene family was carried in groundnut. A total of 151 bZIP and 39 bHLH transcription factors have been identified from groundnut. Expression analysis during high temperature and heavy metal stress conditions. Gene expression studies revealed differential expressions of bZIP and bhLH TFs suggesting the possible role in various stress mitigation and can serve as a candidate genes for improving abiotic stress tolerance and can be helpful in enhancing the crop productivity under stress conditions.

Key words: Groundnut, bZIP, bHLH, Abiotic stress

Plants are frequently being exposed to abiotic stresses such as drought, high salinity, high osmolarity, nutrient deficiency etc. These environmental factors negatively affect the plants leading to reduced growth and yield. Plants have evolved several defence mechanisms start from the alteration of gene expression and cellular metabolism to changes in plant growth, development, and crop yield (Akula Ramakrishna et al., 2011). Following exposure to abiotic stress specific ion channels and kinase cascades are activated, reactive oxygen species (ROS), phytohormones like abscisic acid (ABA), salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) accumulate, and a reprogramming of the genetic machinery results in adequate defense reactions and an increase in plant tolerance in order to minimize the biological damage caused by the stress (Ines Ben Rejeb et al., 2014). Under stress conditions, plants synthesize ABA in various organs and initiate defense mechanisms, such as the regulation of stomatal aperture and expression of defense related genes conferring resistance to environmental stresses. Expression of functional proteins is largely controlled by specific transcription factors (TFs). Recent studies demonstrated that DREB1/ CBF, DREB2, AREB/ABF, and NAC have important roles in response to abiotic stresses in rice (Kazuo Nakashima et al., 2009). TFs like MYB, AP2/ERF, NAC, bZIP, bHLH and WRKY families act as the early responders to environmental signals and trigger the expression of stress-induced genes that are important for plants to be tolerant to abiotic stress.

Groundnut is one of the important legume crops of and semiarid tropical countries (annual tropical production of ~ 46 million tons) where it provides a major source of edible oil and protein. Groundnut kernels contain 47-53% oil and 25-36% protein. The genus Arachis belongs to family Fabaceae, sub family Papilionaceae, Tribe Aeschynomeneae, Subtribe Stylosanthinae. The genus Arachis has more than 70 wild species, of which only Arachis hypogaea L is domesticated and commonly cultivated. The Arachis genus is composed mostly of diploid species (2n = 2x =20). A. hypogaea is an allotetraploid (AABB-type genome; 2n = 4x = 40), derived from a hybridization event between two diploid species and polyploidization. Chromosomes are of mostly similar size and divided into A and B sub-genomes. Cytogenetic, phylogeographic and molecular evidence indicate *A. duranensis* and *A. ipaensis* as the donors of the A and B sub-genomes, respectively. In plant genomes approximately 7% of the coding sequences are assigned to transcription factors (TFs) (Soren Lindemose *et al.*, 2013), and many of these are immediate-early abiotic stress-responsive genes (Kilian *et al.*, 2012). A TF can control the expression of many target genes through specific binding to the *cis*-acting elements in the promoters of the target genes.

The basic leucine zipper (bZIP) transcription factor family is one of the largest and most conserved families, named according to the conserved bZIP domain that is composed of 60-80 amino acids and contains two functional regions: a basic region and a leucine zipper. The basic region is conserved and responsible for nuclear localization and DNA binding. The leucine zipper motif that consists of several repeats of leucine or other hydrophobic amino acids is involved in recognition and dimerization of bZIPs (Wei Hu et al., 2016). Recent studies show that bZIP TFs play crucial roles in various aspects of biological processes, including organ differentiation, embryogenesis, seed maturation, flower and vascular development. Increasing evidences have also indicated that bZIP TFs take part in the regulation of plants' response to biotic and abiotic stress. The basic helix-loop-helix (bHLH) proteins are a large superfamily of eukaryotic transcription factors, and play a central role in a wide range of metabolic, physiological, and developmental processes (Sonnenfeld et al., 2005). Their bHLH domain contains approximately 60 amino acids, including a basic region and a HLH region (Murre et al., 1989). The basic region, which consists of approximately 17 amino acids and is located at the Nterminus of the domain, is a DNA-binding region that allows HLH proteins to bind to a consensus hexanucleotide E-box (CANNTG) (Mark Eben Massari et al., 2000). The HLH region is composed of two amphipathic helices consisting of hydrophobic residues linked by a divergent (both in length and primary sequence) loop, and functions as a dimerization domain

(Ferré D'Amaré et al., 1994). The HLH domain promotes protein-protein interactions and allows for the formation of homodimeric or heterodimeric complexes. Several previous studies showed that bHLH plays an important role in protecting plants from abiotic stresses. A novel bHLH transcription factor, PebHLH35, enhanced the drought tolerance of Populus euphratica (Dong et al., 2014). BrabHLH from Chinese cabbage participated in cold stress (Song et al., 2014), and the grapevine bHLH transcription factor confers tolerance to cold stress in Arabidopsis (Xu et al., 2014). Thus, bHLH TFs play an important role in various abiotic stresses. Agricultural production and quality are adversely affected by various abiotic stresses world-wide and this will be exacerbated by the deterioration of global climate. To feed a growing world population, it is very urgent to breed stresstolerant crops with higher yields and improved gualities against multiple environmental stresses. Our study provides detailed characterization of bZIP and bHLH TFs which can be used as candidate genes to develop stress tolerant varieties in groundnut.

MATERIALS AND METHODS

Plant materials and stress treatment

Seeds of groundnut (ICGV1119) were surface sterilized and grown under controlled conditions at 28 °C day/25 °C night with a 12-h light/12-h dark photo period. After 10 days of germination, heavy metal stress was imposed hydroponically for 3 days with 300µM CdCl₂ and for high temperature stress seedlings were exposed to high-temperature [42 °C for 2h (induction) followed by 48 °C for 6h]. After the stress treatment, control and stress exposed tissues were harvested immediately and stored at -80 °C for further analysis.

Identification, characterization and sub-cellular localization of bHLH and bZIP proteins

The bHLH and bZIP domain containing protein sequences of groundnut were retrieved from the Plant Transcription Factor Database ver. 2.0. and Arachis genome (Peanut Base) for the hidden Markov model (HMM) profile of the bHLH and bZIP domain downloaded from the Peanut database using HAMMER (ver. 3.0). All redundant sequences were removed and the collected data were further curated by examining the

presence of the conserved bHLH and bZIP domain with the help of Pfam (http://pfam.sanger.ac.uk/), SMART (http://smart.embl-heidelberg.de/) and InterProScan (http://www.ebi.ac.uk/Tools/InterProScan/) web server. The length, molecular weight and pl of each deduced polypeptide were calculated using ExpasyProtParam tool (http://web.expasy.org/protparam/). Further, WOLF PSORT (http://www.genscript.com/psort/wolf_psort.html) tool was used to predict the subcellular localizations.

Multiple Sequence Alignment and Phylogenetic Analysis

Amino acid sequences of bHLH and bZIP TFs belonging to groundnut were imported to BioEdit v7.2.5 (Hall 1999) and multiple sequence alignment was performed with bHLH and bZIP protein sequences using ClustalW with default parameters. The bHLH and bZIP sequences were imported into MEGA v6.06 (Tamura *et al.*, 2013) to construct a phylogenetic tree.

Genome wide distribution, Gene structure and Conserved Motif analysis

The chromosomal location of *bHLH* and *bZIP* genes obtained were from Peanut base website (http://peanutbase.org/) and the map was generated using MapInspect (http://mapinspect.software.informer.com/). Gene Structure Display Server from Centre for Bioinformatics, Peking University, was used to display the intron exon junctions (http://gsds.cbi.pku.edu.cn/index.php). The genomic and mRNA sequences of bHLH and bZIP these were downloaded and used as query for generating its gene structure. A number of introns and exons were estimated based on this alignment and confirmed by the coordinates given in the sequences. The MEME Suite tool v4.9.1 (http://meme.nbcr.net/meme) was utilized for analysis of the conserved motifs.

Total RNA isolation and cDNA Synthesis and PCR amplification of *bHLH* and *bZIP* genes

Total RNA was isolated from control and stress treated shoot tissues using Trizol reagent and cDNA was synthesized by reverse transcription with 500ng of total RNA using PrimeScript RT Reagent Kit (Takara) according to the manufacturer's instructions. Gene specific primers for *AdbHLH48*, *AibHLH22*, *AdbZIP12* and *AibZIP15* are listed in Table 1. cDNA concentration was checked using Nanodrop 2000 (Thermo Scientific). PCR reactions were setup using Taq DNA Polymerase. Each PCR reaction included 2 μ l cDNA (1 μ g), 1 unit Taq DNA Polymerase, 10mM dNTPs, 2.5 μ l Taq Assay Buffer (10X), 0.5 μ l gene specific forward primer (10 μ M), 0.5 μ l reverse primer (10 μ M), and made upto 25 μ l with sterile water. The reactions conditions were 95 °C for 5 min followed by 35 cycles of 95 °C for 30 s, 54 °C for 45s and 72 °C for 30s; 72 °C for 2 min.

Expression analysis of bHLH and bZIP genes

All RNA samples were quantified by Nanodrop 2000 (Thermo Scientific). cDNA was synthesized by reverse transcription with 500ng of total RNA using PrimeScript RT Reagent Kit (Takara) according to the manufacturer's instructions. Gene specific primers for AdbHLH48, AibHLH22, AdbZIP12 and AibZIP15 were designed using Primer3 software (Table 1). gRT- PCR reactions were performed using SYBR Green PCR Master mix (Takara) on CFX96 Real Time PCR (Biorad). Each PCR reaction (10 µl) included 2 µl cDNA (100ng), 5µ1 1x SYBR Green Master mix, 0.5 µl gene specific forward primer (10 μ M), 0.5 μ I reverse primer (10 μ M), and 2 µl sterile water. The bHLH and bZIP expression was normalized against actin as reference gene. The reactions conditions were 95 °C for 10 min followed by 40 cycles of 95 °C for 10 s, 54 °C for 45s and 72 °C for 30s. All reactions were run with three technical and the data was analyzed using $2^{-\Delta\Delta CT}$ method.

RESULTS AND DISCUSSION

Identification of bHLH, Protein features, multiple sequence alignment and Phylogenetic analysis

To identify all the bHLH transcription factors, we retrieved all the predicted bHLH genes from Plant TFDB and Peanut Base (http://peanutbase.org/). The keyword, HMM profile and BLAST search predicted that the groundnut genome encodes about 151 bHLH proteins. A total of 151 bHLH genes were identified from both *A. duranensis* and *A.ipaënsis*. They were named as *AdbHLH1* to *AdbHLH79*, and *AibHLH1* to *AibHLH72* respectively. Basic information like molecular weight and pl of AdbHLH are depicted in Table 2. The average polypeptide length was 351.21 residues with the length

ranging from 181aa (AdbHLH 77) to 665 aa (AdbHLH 67). The pl values range from 4.69 to 9.76. The subcellular localization results revealed that majority of the proteins were localized to nucleus and 2/76 were predicted to be localized in chloroplast and 1 in cytoplasm. Basic information like molecular weight and pl of AibHLH are depicted in Table 3. The average polypeptide length was 362.90 residues with the length ranging from 168aa (AibHLH 70) to 663 aa (AibHLH 18). The pl values range from 4.61 to 9.77. The sub- cellular localization results revealed that majority of the proteins were localized to nucleus and 1/76 were predicted to be localized in chloroplast. The multiple alignment of AdbHLH and AibHLH, proteins indicated that they share a highly conserved 7-9 domains consisting of N-terminal DNA binding domain and a variable C-terminal transcriptional regulation domain (Fig 1 and 2).

To examine the structure and phylogenetic relationships of groundnut bHLH TFs identified in our study, a combined phylogenetic tree was constructed with the aligned bHLH domains from groundnut. The relationship among the 79 AdbHLH and 72 AibHLH TFs was investigated through constructing phylogenetic trees using Neighbour Joining method and the tree topology revealed several pairs of bHLH proteins with a high degree of homology in the terminal nodes of each subfamily Fig 3 and 4. Examination of the phylogenetic tree emphasis that the groundnut AdbHLH TFs can be classified into seven major groups: Group 1 (17) Group 2 (15), Group 3 (11), Group 4 (7), Group 5 (11), Group 6 (13), Group7 (5). AibHLH can be classified into nine major groups: Group 1(17), Group 2 (11), Group 3 (18), Group 4(4), Group 5(3), Group 6(7), Group7(3), Group8(1), Group 9(8).

Identification of bZIP, Protein features, Multiple sequence alignment and Phylogenetic analysis

To identify all the bZIP transcription factors, we retrieved all the predicted bZIP genes from Plant TFDB and Peanut Base (http://peanutbase.org/). The keyword, HMM profile and BLAST search predicted that the groundnut genome encodes about 39 bZIP proteins. A total of 39 bZIP genes were identified from both *A. Duranensis* and *A.ipaënsis*. They were named as *AdbZIP1* to *AdbZIP1*8 and *AibZIP1* to *AibZIP21*

respectively. Basic information like molecular weight and pl of AdbZIP are depicted in Table 4. The average polypeptide length was 293.4 residues with the length ranging from 146aa (AdbZIP 15) to 495 aa (AdbZIP 1). The pl values range from 5.03 to 9.9. The sub- cellular localization results revealed that majority of the proteins were localized to nucleus and 1/76 were predicted to be localized in endoplasmic reticulum. Basic information like molecular weight and pI of AibHLH are depicted in Table 5. The average polypeptide length was 296.4 residues with the length ranging from 145aa (AibZIP 18) to 800aa (AibZIP 8). The pl values range from 4.86 to 9.36. The sub- cellular localization results revealed that majority of the proteins were localized to nucleus and 2/76 were predicted to be localized in endoplasmic reticulum. The multiple alignment of AdbZIP and AibZIP indicated that they share 5 to 6 highly conserved domains consisting of N-terminal DNA binding domain and a variable C-terminal transcriptional regulation domain (Fig 5 and 6).

To examine the structure and phylogenetic relationships of groundnut bZIP TFs identified in our study, a combined phylogenetic tree was constructed with the aligned bZIP domains from groundnut. The relationship among the 18AdbZIP and 21AibZIP TFs was investigated through constructing phylogenetic trees using Neighbour Joining method and the tree topology revealed several pairs of bZIP proteins with a high degree of homology in the terminal nodes of each subfamily Fig 7 and 8. Examination of the phylogenetic tree emphasis that the groundnut AdbZIP is classified into 8 groups: Group1 (4), Group2 (1), Group3 (3), Group4 (2), Group5 (1), Group6 (1), Group7 (1), Group8 (5). AibZIP TFs are classified into 8 groups: Group1 (4), Group2 (2), Group3 (1), Group4 (4), Group5 (2), Group6 (1), Group7 (1), Group8 (6).

Chromosomal distribution and gene structure of bHLH and bZIP members

The genome of groundnut comprises of 20 chromosomes (10 from *duranensis* and 10 from *ipaensis*) varying in their length in which shortest being chromosome 8 and longest is the chromosome 3 in *A. duranensis while in A.ipaënsis*, shortest being chromosome 4 and longest being chromosome 9. *In*

silico mapping of *bHLH* and *bZIP* indicated an uneven distribution of the genes on all the chromosomes. (Fig 9, 10, 11 and 12). The exact position (in bp) of each *bHLH* and *bZIP genes* on groundnut chromosomes is given in Table 2, 3 and 4. The gene structures were investigated through genomic annotation to determine the structural diversity. All *bHLH* and *bZIP* genes harbored at least two exons except few being the shortest not having intron. In addition, a separate phylogenetic tree was generated from the complete protein sequences of all the *bHLH* and *bZIP* genes (Fig 13, 14, 15 and 16).

Identification of conserved motifs

The MEME (Multiple Expectation Maximization for Motif Elicitation) server was used for exploring motif distribution in 79 AdbHLH, 72 AibHLH, 18 AdbZIP, and 21 AibZIP (Fig 17, 18 and 19). Five different conserved motifs were identified, of which most of them had at least three highly conserved motifs. The motif sequence logos are depicted in the Table 6, 7, 8 and 9. Some of these motifs have been characterized in animals regarding specificity in the DNA-binding sequence recognition and dimerization activities responsible for the activation or repression of target genes or for binding to small molecules. Multiple sequence alignment and identification of conserved motifs using MEME tool indicates that most of the bHLH and bZIP proteins possessed 5 to 6 sub-domains in the N termini that conferred the DNA-binding activities. The motif composition of these TF sequences may provide clues for further functional analysis of these TFs. However, the biological significance of most of the putative motifs remains to be elucidated.

PCR amplification of bHLH and bZIP genes

Total RNA was isolated from stress treated tissues (Fig 20 and 21). The PCR reaction mixtures were run on 1.5% Agarose gel prepared using 1X TAE buffer along with 100 bp ladder. A single band of *AibZIP15* (704bp) and *AdbZIP12* (709bp) was observed on gel. There was no PCR product for *AdbHLH48* and *AibHLH22* under high temperature stress (Fig 22b). Under heavy metal stress, *AdbHLH48* (450bp) and *AibZIP15* (709bp) were amplified and single band was observed on gel (Fig 22a). The band pattern is comparatively similar to the

51

results obtained by quantitative PCR analysis.

Expression profiles bHLH genes during high temperature and high metal stress

The plant specific *bHLH TFs* play important role in regulation of diverse biological processes, including development, growth, cell division and responses to environmental stimuli. To cope with these stresses, plants have evolved a range of physiological and biochemical responses and a complex of signalling transduction pathways (Rosa M. Pérez-Clemente *et al.*, 2013). bHLH proteins are plant-specific TFs that have been shown to function in abiotic stress responses (Marie Pireyre *et al.*, 2015). To investigate the responses of *bHLH* genes to high metal and high temperature stress, we analysed the expression profiles

Table 1. List of primers for RT-qPCR

of one *bHLH* gene from each genome and expressed the results as fold changes with respect to the control. During heavy metal stress, bHLH belonging to Group 5 and Group 1 such as AdbHLH48 and AibHLH22 genes were down regulated with folds 4.49 and 1.56 respectively (Fig 23). During high temperature, bHLH genes were up-regulated and AdbHLH48 and AibHLH22 were found to be induced by 16.9 and 0.93 folds respectively (Fig 24). During heavy metal stress, bZIP genes belonging to Group 4 and Group 1 such as AdbZIP12 and AibZIP15 showed up regulation by 9.25 and 10.01 folds respectively. Out of 2 bZIP genes AdbZIP12 was down regulated by 12.9 fold and AibZIP15 was up-regulated by 10.68 fold (Fig 24). AibZIP showed increased expression under both drought and high temperature stress.

Gene Name	Forward Primer	Reverse Primer	Length (bp)	Tm (°C)
AdbHLH48	ACGGATCCTGACCTGTTCCAACTGCTTG	TACTCGAGTCTATGAGCTCCGGGATGAG	28	63.0
AibHLH22	ACGGATCCTCTCTTGCAGAGGGGAAAGA	TACTCGAGCAAGTCTTGGGTTCACAGCA	28	63.0
AdbZIP12	ACGGATCCACCACCAGCAAATGTTCTCC	TACTCGAGAGGCGCAAGAATTAGGAACA	28	63.0
AibZIP15	ACGGATCCGGCGTCTTCAAGTGGAACAT	TACTCGAGAACTGGCTCCATGAATGACC	28	63.0

Table 2. AdbHLH genes identified in Peanut, Chromosomal location, protein features and its localization prediction.

Protein	Chromosome Number	Chromosomal (b	Location	Dedu	iced Poly	peptide	Subcellular	
	Number	Start	End	Length	pl	MW	Loounzation	
AdbHLH1	A01	11180803	11184851	450	5.9	56349.39	nucleus	
AdbHLH2	A01	23818826	23821600	387	7.18	42810.87	Nucleus	
AdbHLH3	A01	24107575	24110292	268	7.03	29696.69	Nucleus	
AdbHLH4	A01	33747530	33755680	297	4.91	33725.91	Nucleus	
AdbHLH5	A01	76355573	76358681	255	8.73	27535.72	Nucleus	
AdbHLH6	A01	92963020	92966444	405	5.7	43265.18	Nucleus	
AdbHLH7	A02	4990418	4992478	992478 447 6.04 50189.76 Nucle 491724 516 5.45 55840.51 Nucle 881124 338 6.42 37356.38 Nucle 880387 345 7.7 37894.06 Nucle 681794 407 9.24 44298.24 Nucle				
AdbHLH8	A02	11490442	11491724	2478 447 6.04 50189.76 Nucle 1724 516 5.45 55840.51 Nucle 1124 338 6.42 37356.38 Nucle 0387 345 7.7 37894.06 Nucle 1794 407 9.24 44298.24 Nucle				
AdbHLH9	A02	65874875	65881124	111 132 141 132 141 178 447 6.04 50189.76 Nucle 724 516 5.45 55840.51 Nucle 124 338 6.42 37356.38 Nucle 124 338 6.42 37356.38 Nucle 187 345 7.7 37894.06 Nucle 194 407 9.24 44298.24 Nucle 161 694 5.1 77631.15 Nucle				
AdbHLH10	A02	65875202	65880387	44 405 5.7 43205.16 Nuclei 78 447 6.04 50189.76 Nuclei 24 516 5.45 55840.51 Nuclei 24 338 6.42 37356.38 Nuclei 37 345 7.7 37894.06 Nuclei 94 407 9.24 44298.24 Nuclei 71 694 5.1 77631.15 Nuclei				
AdbHLH11	A02	66678616	66681794	8 447 6.04 50189.76 Nucleu 4 516 5.45 55840.51 Nucleu 4 338 6.42 37356.38 Nucleu 7 345 7.7 37894.06 Nucleu 4 407 9.24 44298.24 Nucleu 1 694 5.1 77631.15 Nucleu				
AdbHLH12	A02	89000583	89007871	447 6.04 50189.76 Nucle 516 5.45 55840.51 Nucle 338 6.42 37356.38 Nucle 345 7.7 37894.06 Nucle 407 9.24 44298.24 Nucle 694 5.1 77631.15 Nucle				
AdbHLH13	A03	3170735	3173105	465	6.38	51017.44	Nucleus	
AdbHLH14	A03	4396954	4399636	349	6.1	38798.89	Nucleus	
AdbHLH15	A03	12136351	12138613	216	6.84	24041.54	Nucleus	
AdbHLH16	A03	107170665	107172739	406	6.43	44670.22	Nucleus	
AdbHLH17	A03	117229922	117230891	338	7.14	38190.66	Nucleus	
AdbHLH18	A03	120673179	120676797	258	7	29055.83	Nucleus	
AdbHLH19	A03	123213398	123215577	337	4.69	37951.67	Nucleus	
AdbHLH20	A03	131184949	131187253	471	5.52	52619.98	Nucleus	
AdbHLH21	A04	29987499	29997525	247	5.34	28285.34	Nucleus	
AdbHLH22	A05	757006	758358	349	5.16	39414.5	Nucleus	
AdbHLH23	A05	4471852	4474149	334	6.9	36880.17	Nucleus	
AdbHLH24	A05	86030089	86031635	220	9.53	24900.43	Nucleus	
AdbHLH25	A05	104078105	104082033	367	6.07	40422.45	Nucleus	

52

AdbHLH26	A05	105232729	105237613	539	5.16	58266.45	Nucleus
AdbHLH27	A06	11815778	11820126	357	5.69	39118.08	Nucleus
AdbHLH28	A06	109557765	109560470	419	5.65	45509.36	Nucleus
AdbHLH29	A06	110137735	110139757	277	5.85	31321.61	Nucleus
AdbHLH30	A07	9293133	9294428	256	8.76	28456.33	Nucleus
AdbHLH31	A07	55234108	55235523	417	6.44	52504.98	Nucleus
AdbHLH32	A07	57713413	57715466	397	7.08	43397.54	Nucleus
AdbHI H33	A07	68460163	68461453	321	4.83	36494.42	Nucleus
AdbHI H34	A07	70853348	70871615	350	4 88	39768.86	Nucleus
AdbHLH35	A07	75244942	75246494	313	9.18	34370.98	Nucleus
AdbHLH36	A08	15304566	15307528	343	4.86	39261 21	Nucleus
AdbHLH37	A08	17382662	17385316	393	5.85	42849 76	Nucleus
	Δ08	23771934	23774264	328	5.00	37212 97	Nucleus
		2/276717	2/270508	401	5.68	1/1863 38	Nucleus
	A00	29050576	20060076	226	6.01	26574 21	Nucleus
	A00	/2112521	/21152/2	400	0.01 0.01	44306 71	Nucleus
	A00	11/1726	43113242	257	6.77	44300.71	Nucleus
	A09	1141720	1145405	266	5.21	40041.13	Nucleus
	A09	0616546	0610559	500	5.51 6.4E	62460.02	Nucleus
	A09	9010340	9019000	201	0.45	03400.01 21220.07	Chloroplact
AUDHLH45	A09	110722107	110/2390/	291	7.70	31338.87	Nucleure
	A10	4/02/04	4/051/8	308	7.00	41070.07	Nucleus
AUDHLH47	A10	22120099	22122002	230	9.28	26260.28	Nucleus
AddHLH48	A10	104379283	104380857	238	7.86	26566	Nucleus
AdbHLH49	A01	90749358	90752534	256	4.87	29223.97	Nucleus
AdbHLH50	A03	19592294	19594435	221	6.67	25350.15	Nucleus
AdbHLH51	A03	38984268	38987093	528	9.04	59651.37	Nucleus
AdbHLH52	A03	121854601	121856521	327	6.41	36595.78	Nucleus
AdbHLH53	A04	20876962	20880191	487	5.13	54204.89	Nucleus
AdbHLH54	A05	1099767	1101296	336	6.28	37941.85	Nucleus
AdbHLH55	A05	5650995	5652478	335	4.96	37474.88	Nucleus
AdbHLH56	A05	5676022	5677733	322	6.57	36193.44	Nucleus
AdbHLH57	A06	1704105	1705517	307	5.86	35063.41	Nucleus
AdbHLH58	A06	4585188	4586562	278	5.36	31533.59	Nucleus
AdbHLH59	A07	63884568	63887247	332	6.06	36849.39	Nucleus
AdbHLH60	A07	70852467	70853604	193	9.76	21638.45	Nucleus
AdbHLH61	A08	13571762	13573816	325	7.22	35758.02	Nucleus
AdbHLH62	A08	31926538	31927699	228	7.07	26186.85	Nucleus
AdbHLH63	A09	36737760	36739645	303	9.3	34193.65	Nucleus
AdbHLH64	A10	57409973	57414243	311	6.38	35382.97	Nucleus
AdbHLH65	A02	4340844	4342187	473	5.51	53353.28	Nucleus
AdbHLH66	A03	6936674	6945870	279	7.7	31084.6	Nucleus
AdbHLH67	A06	2305528	2307525	665	6.22	72541.1	Nucleus
AdbHLH68	A07	66084895	66087281	262	8.84	28851.52	Nucleus
AdbHLH69	A08	32827123	32829163	272	8.61	30093.18	Nucleus
AdbHLH70	A09	96870471	96872697	223	6.33	25042.36	Nucleus
AdbHLH71	A09	112385877	112387278	311	5.3	34671.55	Nucleus
AdbHLH72	A09	112389260	112390463	302	5.2	33731.5	Nucleus
AdbHLH73	A09	120376856	120378791	361	6.31	40610.33	Nucleus
AdbHLH74	A03	19352315	19353746	208	5.69	23649.96	Cytoplasm
AdbHI H75	A05	105520640	105522451	262	6.01	29705.07	Nucleus
AdbHI H76	A09	110546064	110547184	275	6.99	31371 18	Nucleus
	A10	2767037	2768803	181	9,26	20830.97	Nucleus
	A10 A04	2767037	2768803	181	9.26	20830.97 74386 17	Nucleus

 Table 3: AibHLH genes identified in Peanut, Chromosomal location, protein features and its localization prediction.

Protein	Chromosome	Chromosom	nal Location	Dedu	ced Pol	ypeptide	Subcellular
	Number	Start	End	Length	pl	MW	Localization
AibHLH1	B01	636283	640342	520	5.9	56387.44	nucleus
AibHLH2	B01	30217938	30223799	354	4.75	39553.40	nucleus
AibHLH3	B01	107608827	107611906	255	8.73	27506.73	nucleus
AibHLH4	B01	136640565	136641988	255	4.87	29061.79	nucleus
AibHLH5	B02	77755308	77758153	413	9.27	44795.72	nucleus

AibHLH6	B02	94625362	94627028	189	6.5	21513.15	nucleus
AibHLH7	B03	108120840	108123374	271	8.77	29901.1	nucleus
AibHI H8	B03	121291052	121294003	258	7 04	28944 73	nucleus
	P02	122067226	122060445	247	47	20115.95	nuclous
	D03	123007230	120009440	547	4.7	59115.05	nucleus
	B03	132101077	132103387	508	5.45	50530.24	nucleus
AIDHLH11	B04	28150372	28160597	219	6.86	25266.9	nucleus
AibHLH12	B05	746211	747857	350	5.06	39482.53	nucleus
AibHLH13	B05	4501469	4503100	304	7.2	33763.84	nucleus
AibHLH14	B05	98520553	98525231	536	5.15	57911.12	nucleus
AibHI H15	B05	109099855	109104474	367	6.07	40381.4	nucleus
	B06	3996822	4000058	209	9.69	23867	nucleus
	B00	4110261	4000000	203	5.05	20520.22	nuclous
	B00	4110201	4113003		0.00	39529.52	nucleus
AIDHLH18	806	18357835	18358780	663	0.22	72369.88	nucleus
AIDHLH19	B06	134206069	134209265	420	5.65	45537.41	nucleus
AibHLH20	B07	9285262	9287119	256	8.6	28370.24	nucleus
AibHLH21	B07	33652692	33654351	357	4.71	40780.16	nucleus
AibHLH22	B07	62509004	62511083	395	7.07	43147.23	nucleus
AibHLH23	B07	123477966	123480961	311	4.88	35544.09	nucleus
AihHI H24	B07	125315732	125318601	380	5 74	41449 09	nucleus
	B08	000433	001857	405	6.25	5260/ 21	nucleus
AIDI ILI 125	D00	1700227	1001022	405	0.33 E 44	27420.20	nucleus
	BU8	1/99227	1801832	330	5.44	37429.29	nucleus
AIDHLH27	B08	2084005	2086453	402	5.68	44927.41	nucleus
AibHLH28	B08	7512500	7513857	180	8.8	20429.6	nucleus
AibHLH29	B08	89807832	89809286	329	4.91	37237.77	nucleus
AibHLH30	B08	128695301	128698133	369	8.19	41646.29	nucleus
AibHLH31	B09	276697	278046	344	4.61	39789.54	nucleus
AibHI H32	B09	1342273	1346258	242	92	27208.04	nucleus
	B00	130037680	1300/1058	327	8.82	3/026 71	nucleus
	B00	6920044	6041764	254	6.07	20006.66	nucleus
	D09	0039044	0041704	354	0.97	39990.00	nucleus
AIDHLH35	BIO	1310//3/8	131078628	238	8.46	26579.05	nucieus
AIDHLH36	B01	636822	639231	520	5.9	56387.44	nucleus
AibHLH37	B01	773401	775837	451	5.37	51213.51	nucleus
AibHLH38	B01	29853579	29855816	365	7.18	40438.28	nucleus
AibHLH39	B01	134857606	134860895	407	5.7	43503.43	nucleus
AibHLH40	B01	137028861	137032298	416	9.75	46883.57	chloroplast
AibHI H41	B02	6253314	6255779	446	6.13	50118.64	nucleus
AihHI H42	B02	102553396	102557165	661	4 89	73703 12	nucleus
	B02	105750050	105761406	338	6.91	28166.62	nucleus
	D02	103739030 E07EE00	E0701490	462	6.20	50100.05	nucleus
	B03	5875500	5878134	403	0.38	50834.15	nucleus
AIDHLH45	B03	10090832	10092450	279	1.1	30985.46	nucleus
AibHLH46	B03	14817318	14819570	217	5.99	24186.71	nucleus
AibHLH47	B03	41339015	41343427	539	8.88	60474.21	nucleus
AibHLH48	B03	122440911	122442823	327	6.03	36538.68	nucleus
AibHLH49	B04	20530498	20533734	487	5.13	54204.89	nucleus
AibHLH50	B05	1081535	1082506	342	6.24	38412.28	nucleus
AibHLH51	B05	5834411	5835652	335	5	37457.8	nucleus
AibHI H52	B06	13767672	13769322	289	52	32933 15	nucleus
	B06	20280521	20282128	530	6.11	58644.05	nucleus
	DOG	124072226	124075251		4.0	41020.16	nucleus
	B00	134873220	134875351	302	4.9	41028.10	nucleus
AIDHLH55	B07	38152793	38153907	266	8.24	29235.88	nucleus
AibHLH56	B07	42703139	42704374	332	6.06	36819.32	nucleus
AibHLH57	B07	121797374	121799212	310	8.77	34239.27	nucleus
AibHLH58	B07	125783661	125785901	272	4.79	30831.18	nucleus
AibHLH59	B09	269215	270201	192	9.77	21471.28	nucleus
AibHLH60	B09	44277247	44279136	303	9.15	34152.55	nucleus
AibHI H61	B09	131488064	131489865	369	616	41501 24	nucleus
	B00	1/6220205	1/6221702	272	6 52	210/11 7	nuclous
	D03	72600002	70700000	205	6.50	04701 01	nucleus
	BTO	12099993	12103002	303	0.50	34/21.31	nucleus
AIDHLH64	B02	4649893	4651/64	656	0.38	12941.22	nucleus
AIDHLH65	B02	14875849	14877865	516	5.45	55794.42	nucleus
AibHLH66	B04	76925964	76930950	662	5.59	74255	nucleus
AibHLH67	B06	2329181	2336236	569	7.11	64242.7	nucleus
AibHLH68	B08	7512297	7514586	180	8.8	20429.6	nucleus

AdbHLH77 AdbHLH78 EEIV AdbHLH79 SKLF	AdbHLH76	AdbHLH75	AdbHLH73	AdbHLH71	AdbHLH70	AdbHLH69	AdbHLH67	AdbHLH66	AdbHLH64	AdbHLH63	AdbHLH61	AdbHLH60	AdbHLH58	AdbHLH57	AdbHLH56	AdbHLH54	AdbHLH53I	AdbHLH51	AdbHLH50	AdbHLH48	AdbHLH47	AdbHLH46	AdbHLH45	AdbHLH44	AdbHLH42	AdbHLH41	AdbHLH40	AdbHLH38	AdbHLH37	Addattase	AdbHLH35 DDDI	AdbHLH34	AdbHLH32	AdbHLH31 -FWN	AdbHLH29	AdbHLH28	AdbHLH27	AdbHLH25	AdbHLH24	AdbHLH23	AdbHLH21	AdbHLH20 PSQI	AdbHLH19	AdbHLH17	AdbHLH16	AdbHLH19	AdbHLH13	AdbHLH12 SELM	AdbHLH11	AdbHLH9	AdbHLH8	AdbHLH7 HDVM	AdbHLH5	AdbHLH4	AdbHLH2	AdbHLH1
PPTS PWVNUVGVE CELSNSLGIXSSKTECCEGSNETCYEDIKDING- CELVNTEDSSRAGSPDDGSNRLNSAGLEILP	YEYDPAMVDASASVPPCPNQKG	DRILFTKSQSSNKLFYDGAAAAD	-FINSNNMNMMNMNMLGSSDCMMH	NUPDSKSPDACENITSKLEKPRKRSRSNE	PPSDFLWSNPSVSSEIGFSAGGS		TDLGVLELGSVRTLPENFELLQAIKSVFSSQATTTYPMANSKPLMPLTVMSEKRDENNNAL			QRVETTYPAEIWNNNTTCSSPPSV	FOUNDED TATION OF SPOCAATY UCESLE		ITTIDHDCASVPGANNSPLAPVEAATSSNT	EINEFEQYTRSGS-DAATRLSKHHQERV	RGASPSP3ELISERA	STIVEENKVEEYGERTTRKRQSGE	DLIGIHLNPNGIPCITNPIGNNTPNE	VEPSHHQEIENETLMRVFLNAISPQQHQNLPYN		-VUPNITEMDEASIIEDAIDYIEHLH	MENYDROSLFLDPSCTLP	NKTPESHEVGSCSNNLLSEVDNTNHHHHQLGLVM	STSERAYAMDHCWDNSNSNSSSIVF	-ICSSPLEMAANSSQEESTISEQUPINVEGAAAASSAAASSAAAAAAAAAAAAAAAAAAAAAAAAAA		VESGNEGMESNCVENRNLIIRSDDSNNNNNNGSTKC	DSAAFTWL-DCDCDUNEXPDSSNI	FXEYSSPNLEDGETMNSSSLLPSEGAALP	GSGSFSEMVGSFLQSPNSEHSQGEGEGEDSGSAPSG	TOONTOOTTEETOCMEEEEENXMIETETMI	STAGTTTAWHYYAPNSNNNSSESVPTQIVP		TTSAASEDLNSAISRTSSCPLPSLAEGKETTTPNN	NETTNYGAITAAAAASSAESETNNVSNKQNNMQYHHHHHQINNKELDETVSQASKRTIN		-NHGNDAGTERATMNE-CSCVEDSITEDGAPGTAPSG	YGGN-LTFFPSNAALIERAAKFSVFAGENSPPE	DIXIGSGGSGKGLVEPEASPINCPPWSMPP	NNNSSESVPTQIVP		- VV ENLORMURACIINUALEXIQRUC	LLNLLHLPRCSTSSLLANPAICIANKTCNF		TKTPSEAGEASCS-TLLSEVDPNYINGLEVVK	TPPPINMADNKRKTTSNSSSENNNKELSAG	3 NN 200001 + 000 A +	IAEIRSTSNTLNNPESAEAFAESQSSDEMSGLPVG	ACLEMSED-IRVGSPNDGSNNLDSNEHLLAV	-BOISEIGSEEIGANSPD-DGROGGSNGDALHYSPGES	- IDG778XLTEP3N7ALIERAARF3VFAGEGP	LKAGVVELGSVETVPEDCGVLDLVRTAFG			-QILCEDNSNSSLNNNDNTTQLYDLDYTTLN		TLQDDKRSENLAVSHDEGKQALGGSANESDRAESSG
						DRVKGELV	LEPGLAIGDHTHQNNNKVVEGVPKVFGSAVI						IAA				CHSMGFLGDLPVGSD			EOEXBIODEIMELE	HUGE CUSL									BCD V DE V VI VI CCDO	HAYDSAFA	Xoundary Contraction		DQYDLIKTSSSAAATTTTGPYESIE	HILL HAYDSAFA-				HAYDSAFA			CNPMGFLGDLPIGSDNTSA	QCRVEEQAVDDVCV					TEADNQSGQVDSYRVDPTQ			ESSSGQAKAFPKIFGRELS	SASCOVENNNNTTPTKAV				
)EARTSHLCTECBGHTHYSTTRSSASHIPGSC		EDNNNNNNDSNNDD	PMS-MPSIQELPENNHESFIVPPQ			ZAPVKLERKGV PER	SGRSHFFREKLAVRKMEERPWVPHHQPNGNNNANANANANANAINFPNGPPRNGLHH	a constant de la const La section de la constant de la constant de la section de la Nacional de la Nacional de la Nacional de la Consta	TPVTNNKKRRRADEDGKR	LPSSCRPKRRA-KSRKNKE		STATES ST			13 HI HOMMINS NINI NSSNAT		YDTSIHINPAFGVGEIFESIPHGYTRLTDSRSGFIFGGGGDEMEGNG-	ITVVHPESSAFKRYRTEPEPGPERAPESLRSRQS	MDELESRSEASPS	SERLENDER SER		KVEIMSSSSPNNIDTCGTTLLGNNNNHHHNHENY		A ANALYSIC STRUCTURE STATE STRUCTURE STRUCTURE STATES STRUCTURE STRUCT	TRTENCONSCIENCES STORES STORE STREET AND STREET AND STREET ST	YMPRETGDVWDASEENSSKRGTNNGEIMESTSNAMEAQDV	STEME/SVDSIT/ECGESS		EDCSGRRRNQ		21C	× × × × × × × × × × × × × × × × × × ×	-KRETDE HNTEVVASE	HNSSSSATESGAFKLIKENPLPRSKKPRWENNN	SLC	NRR-KRMLDHDSSFSE	DAARLAPVAVGGVVKNEE	PVDDSPMLDGVSDFPC1KGLDSKKRKRT	31C			SSVLYDPLLHLNLPPCPPALRELFCSLPRGYSI		SKDEMVCPKMNDTTPKDN	REGRSSKKQRK			RWDPIGSPIDGIGVGIPVESPIEDGILTGEDDH	YGSWNDAPCCSENLTGLKP		VGGGDAKSQSITISESPKLEDDSGETSDS	TRANIERCGGRGNSNTQEVCQRSQQSSATTTT	FQEENRAGDSKAEVGA2	13T	RECCLYNNNPSSDCGNHV	RDDSPMLECTSGEPSNKGLSSKKRKRI

Figure 1. Multiple alignment of 79 AdbHLH TFs of groundnut

AdbHLH75 AdbHLH76 AdbHLH76 AdbHLH77 AdbHLH78 AdbHLH78	AdbHLH71 AdbHLH72 AdbHLH73 AdbHLH73	AdbHLH67 AdbHLH68 AdbHLH69	AdbHLH65	AdbHLH62 AdbHLH63	AdbHLH60 AdbHLH61	AdbHLH57 AdbHLH58	AdbHLH54 AdbHLH55	AdbHLH52 AdbHLH53	AdbHLH50 AdbHLH51	AdbHLH47 AdbHLH48	AdbHLH46	AdbHLH44	AdbHLH42	AdbHLH40	AdbHLH37 AdbHLH38 AdbHLH39	AdbHLH3	AdbHLH3	AdbHLH3	AdbHLH3	AdbHLH2	AdbHLH2	AdbHLH2 AdbHLH2	AdbHLH2	AdbHLH2	AdbHLH1 AdbHLH2	AdbHLH1	AdbHLH1	AdbHLH1: AdbHLH1	AdbHLH1	AdbHLH9 AdbHLH1(AdbHLH7 AdbHLH8	AdbHLH5 AdbHLH6	AdbHLH2 AdbHLH3 AdbHLH4	AABHT,H1
		DVEASCREECPSMADERPRRPRRPRRPAN	APXSXRGRXPVLNRETPVN		KARRSSECLDHI		PQSQGSKRQAAHSHDHI	SQVDIGVMEENRARACSVGGRGRR	AMRIRERICATRPSSTCLHH	GDRAASASKSHS	EGQRPKLSSHQPHDHI					S VMGNKELRKNNRSTKKVVGQ			IEVAERPRRXNVXISSDPQT	EDRAASASKSHS		AELGEMTAGEIMEAKALAASKSHS	EDRAJASKSHS	XELPVLLRSXXXXXDD	SQLDMGVLDFNRVTASVGKGREGK	VGPRSRLSCPCDHI	DSVPWKVRAKRGCATHPRS		PSDRLRGGGKGSGTPCDELSANHV	DGEKLPYVHVRVRRGGATDSHS	SIDLGNEDSSSTHLDERRPRRPRRPAN		SSSKGSKRSPSNACDHT	
EIERCERRENATIVOSIESILEPL 		GREEPINHVEAERGRREKINGRFYAIRSVVPN EAERRRGRIVAHISTIRSI EAERRRARIVAHISTIPA-	ADRERGRREKLNHRFYALRAVVPN-			AVERNRRRCMNEHLSVLKSLMHP AVERNRRKCMNDYLSLLRNLMPD	TVERNERKLMNEHLAVLRSLMPE- MAERKRREKLSGSLIALAALIPG- IAERKRREKLSGREVALSAMVPG-	GOGTWPIDKORRERIGERLKILOELUPN	FIERNRRKHMKMLYSTLNSLLPNI MIAERRREKLNDNFGALRALLPP-		IAERKRREKLSQRFIALSALVPG-	IAPRYPRPERISERMELLODIVPG-	VTERKRRRELTERFIALSATIPG-	ACREXIRROKINERELELSSIIEPC	IAERVRREKISERMRLLQELVPG- IAARERRRKITDKTQELGKLVPG- IAERVRRTKISERMRKLQDLVPN-		CAESARADARA (SALASALASA)		VAARQRREKISERIRVLQRIVPG	CAEKBREDRINACLATLRKLIPK	LAERARREXINARMKULQELVPG	EAERRRERINNHLAKLRSLLPN		PIHILEDRARNSPIHILELR	PSKNLMAERRRRRRRRLNDRLSMLRSIVPK	EAERBRERINGHLATIRGLVSS	LAERVRRTRISDRIRKLCELVEN	LAERVRRTRISERMRRLQDLVPN	LAERYRSISISSERIC, ELVEN	- LAERARREXINARMELLQELVPG	GREEPINHVEAERGRREKINGREYAIRAVVEN	IAERARREKISERMKILGDLVPG	IAERKRREKISGSTALAALVPG	LAERVRREKISERMKFLCDLVPG
G IKOKRSISDHMEAVNIKLERAKVKLEE- B Y IKOKRSISDHMEAVNIKLUKLUKAKDELKKKKLUKARDELKKKLSNYYHHHDNNOKPISSIN- NSCEESSAVMKDVKSDIKAAVNYKKLUKKLEKAKEKANILE- NSCEESSAVMKDVKSDIKAAVNYKKLUKKLEE- 	GTX-VDISTMLEEAVGYVXFLGLGIXLIS ⁻ -SDDLMNYAPIAYNGNNIGLDENITTPKGNNNSRYIA		vsrmdkaslisdavayinelkakirdleserdnvçrrkkvrleqddumdnqstvvnsstvvd	UPEXDEXUDIDEXXXIISIDEXXVIANEXKERILKO SUVQRODQASIIGGAINEVKIISIDEXKVANEXKERILKO SUPXDEXDEXSUTDEXVBIISTIOOTVALEXKERICTIOISUSYSYSTYCESAVTDDOMNDYD	EXX-IDXVSILSEALAYIKQLKEQGXXLEEESSKXNRTVVESVSLVNXR	SVICRSDHASIIGGAIDFVKELECLVESLEACREWRSHNNNNKIGTWFFSEFEGFFGEDGGKEEASGGNEDGGKEEASGGN	JKK-HDKASIJGDJKVKKLOGRVOELEE-KAKKWUSGUAAGUSKUNEDELMUMWUGGAPENE VEGOVENE VEGOVENE VEGOVENE VEGOVENE VEGOVENE JKK-HDKASIJGDJKVKKLOGRVOELEE-KAKKVVSGUVVEROVENERIJSSDDDSSSAAAILDGNOUVALAHVEARPAAAE	PURVDRASVGDAIDVIRELINIVUELASUEKARIGERERANKDENDASSSOIK	DPNPTRFKEALLLLDQVDKALNYIKSLEEKVKMSKEKKNSLLLRMGRRRRMGRRR	SDKADKAALLASVIECVKELKSCISEITEEETLESEDETUEV		ORVPGRAINDETINVCGLCRCVCVERNINGTOIENVERDIGGHSLAHEITEIDSATETGGGGGCCVEVIHNNIENGSLEHNSV	CUTRACIDESALISELAS (DEVELOS) CONTRELAS CONTRELAS ANDONINAS - RESENCES DE CONTRELAS ANDONES AND ANDONES AND ANDONES AND ANDONES AND ANDONES AND	SDROTSDDAUDLANDVIKSCLORVERIDDAAKSUSSANKOREO	GYKITGKAVHLDEINYEQSIQQQYEILGUAKATANYNPELNLDLERILSKDILQSRIGGYGGGISGSGAFP- GSKNNTNEMHENASKYVKTIGQIGHLGUANYLCKED MGKQTWADAMLENASKYVKTIGQIGHLGUANYLCKED				CNRTMEASHIDEANVICSIORVETINKELAUVERLEVONNNNNVEPPTT-IAFSENESETINESVENERP		ONKINGSAVMADEINNYGASAGAYE HAKKANJAYNAPHIGSVERHINGSRAHASAVHASAVHASAVENDASHIPSA	9CSRVTGRAVMLDEIINYVGSLQRQVELLARVUPVIPESDCSRVTGRAVBESALAPVIPELAPSQPGLIQPTLPSI	9DRPRNDXAVIIADVIQMLKDLAREVNRLKTEMKALSDESRELMQEXNELREEXASLKSD	N ISSNEDSISIIGUUUUSSSENSIGUUUUSSSENSIG	sPR&MDRTSILGDVIDYMELLERINKLQPEEV-EEGVSQQNPEGVSQQN	3LCK-TDXASVLGDAIRYLKÇLQEKVXALEEE-QNXRK-AVESVVEVXXSQLSNDAEDASLEYEGIFHEALPEIEARECD 3TDXMDXATILAKVVSQVXELQENAMEASKG-LLIPTDED	aMDRQTN2ADMLDEAVAYVKSLQKQIEELSWKLASVSPEFEDFAMDLDNDNNNGHLVRP	aCNRITGRAGMLDELINYQSLQRQYETLSESQAROTCAHRRQ2VDDLFAREYFPACAPNEESIGMGSSENTNNPAAYLDFNSVQQLVSCSNGLINNIG BCNRITGRAGMLDELINYQSLQRQYETLSMRLAAVNPRLELNVDDLFAREYFPACAPNEESIGMGSSENTNNPAAYLDFNSVQQLVSCSNGLINNIG		CURISGUATVIDEIINNYCSICRYEIUSKIAAVVERHENLOSIMENESSIENMYSEIENN	SIERRED, ASIEGDAIDEVKELE, LL, SLEA, KNMERKNNNNSSNKNEDAIGESSNSSSYTNGEIDGINRSSYTSLSILSTERONEGGGGGGGGGGG AISKNDKASLGDAITYITDL, WKIKVLETEKNFEKNFEKN	CNRVIGRALVLDEIINVIGSLGRGVEFLAMKLEAVNSRLNNNSVVECFPSRDVGVGNGPEDINGMIFGSGATRGYAGGSGSG	IXX-MDEASVLODAIXVIXGLAEVYTLEEE-VXAXYVESAIYVXXSLEEDNO	1CRAUMERAUMEDRIENVUORLOBOVERLSMELATUNPRMDEN-IEGLLAKEILOORAGUS-SAHGEPDELSMAEPPLHPSRPGLIHSULPSM

Figure 1. Continued

Figure 1. Continued

ALBHLHAST TROPTOLINN ALBHLHAST TROPTOLINN ALBHLHAST PRODUCTINN ALBHLHAST DEPERTURN ALBHLHAST DEPERTURN ALBHLHAST DEPERTURN ALBHLHAST ALTHROUGH ALBHLHAST ALTHROUGH ALBHLHAST ALBHLHAST ALBHLHAST ALBHLHAST ALTHROUGH ALBHLHAST ALB	ALBELLAS ALBELL
THE PROPERTY TRANSPORT OF THE TRANSPORT AND A CONTRACT AND A CONTR	PEGELSGEPENDSGEIERAARESGEGAGNSVEDMVNSEGI PEGELSGEPENDSGEIERAARESGEGAGNSVEDMVNSEGI SVELSGEWEA-
ASSENT AND DELET TO TARE A CONTRACT A CONTRA	CCSNNITARIGGINGGINGGING
-LINUNDERSTRATISSACTOR 	CHICLRSAALGGCGHKSDDWVYEDAKDD-
A CALTANSE SECTIONS DO DO SENSE DO DO SEL DO DO DA	MALTCODERSENTEALS AND FORMATINE SERVICES CONTITES CONTRACTION AND AND AND AND AND AND AND AND AND AN

Figure 2. Multiple alignment of 72 AibHLH TFs of groundnut

Figure 2. Continued

2QGTLSS		KCSKAE	KELKAE	ENPORLEXNILERVEYLHRR	THINKY INVOLUTION TO A CHINA	XXIVGECELSNSUSLHAEEAPS		2QKGKQ	HHEGATSSEDI	DLPSSC		DNGTNNDNKEENSO							EAGQO	ACYQDGDGSQVI	RISMAEKMKI	LAFERS	VKVENKIMK	RELACE	TSSEIAAIEK	CYVE	ADGSSCWLLKYILFTVPYLHSN	ATTT			VLEEFTNH	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		NNNHHNHENYLE	TALEMATMER			NNNNNNKKKDS	SDEMVPEVY	RELKA	TSAEMAAIEK	SDENVENVY						- XNYON LLXGX THAX OPEN	KEVVARSELSUVEASCARE(CE		AESEMFAMENN	VHPGSVGPFGJ	QKGEQEPTPTNKASGKNAKQG	RELMQ	AVVENMG-		DGSQLI	HVPVVFNMG-	IEQVNNO		NNK	TSSEMIGMENI		-EGGGGGGGGGGGGAARPS	
CONGRRNATES VR		KNELREEKLVLKADK	KNELBDEKNRLKVER	ONRHNSAETLECLERTIMP		APPORTATION AND AND AND AND AND AND AND AND AND AN	RRADEDGKRPMKND	RKELTPNNNALGAE	QAELSKMTAQEIME	RPKRRRA-KSRKNK	RAR	GATSSALNSNGKTR	RRRRRR H-RTHRNN	REAR REPAIR AND A STANKAR	FDGAGDSSRT,DNND		RPRRRG-RTRRNS	NPC SCGS	KKKRRRRPRVCKNK	IGVMEENRARACSV	AKKQCTDESKMPKS	INAMRIRERIGATRP	DSVPWKVR	KNDLREEKASLKTDI	LOCS-DSVVCKIR	ASCATKHVGPRS	KNNEENNSSPNNTNPTSSAGPTDP	ERARRATRPARMA	THIMBIRDREHECHCHCLPHHPLI	A DAGONORONA CANADA CAN	QEVANKKRGGKRS			ESSCHEARNFGCRP	MHIP-EDSVPCKIR	KRG	ABRLARKS	INEEEPPKGYIHVR	RNGFCVGINNESER	RUNLADERURLAVER	LOFS-DSVPCKIR	RNGECVGINNESOR	NASNKONNMOYHHH	CSGEAPRENEIHUR			CARGE STREET STREE		SMALEXXXXXXXXXXXXX	CSGDGERLPYVHVR	IHPPLSDSVPCKIR	QSELGENTAGEIME	QVSDPPKEEYIHVR	KNELREEKASLKSDI	MCGE-KKVPKS	D	MGVLDENRVTASVG	MCGIGERENES	SEDARVGKNYENSD	-APTATATGYIHVR	KKGNAMNNNKRKNK	LOFPDSVPCKIR		CE-OPPRODYIHVR	XSFSFLG
	SSSTTNKIERRLIEKNRRNHNKMLYSKINSLIPNYN	ERIERQLKDLPVQPAG	VQPSE	SPODDLISSHVAAERBRREKLNEKEITLRSLVPYVT	DNOCODOCTUMEDUECDT.EXAUDUECDDA THODOCDCNOCTUMPED		GNDHDLHIWTERERRKKNRDMEANLHAMLPQLE	DGDENKKWMHREIEKQRRQEMSRLCTTERTLLPEEY	AKALAASKSHSEAERRRRERINNHLSKLRSLLPSTT	EQIENQRMTHIAVERNRRKQMNHYLSLLRSLMPDSY	RSSS-ECLDHIMAERKRRQEITQKFIALSATIPHLK	VTRGSATDPQSLYARRARERINERLATLQSLVPN-G	EDIENORMTHIAVERNRRRCONNDYLAVLRSLMPPSY	PRIENCRMUHTATRRNDRKOMNELLAULRSLMPRAY	XQUERCXQUERCXQUERCXQUERCXQUERCXQUERCQUERCQUERCQUERCQUERCQUERCQUERCQUERC	THE PERCENCENT AND STREET OF DET OF THE PERCENCENT OF THE PERCENCENCENT OF THE PERCENCENCENCENT OF THE PERCENCENCENCENT OF THE PERCENCENCENCENCENT OF THE PERCENCENCENCENCENCENCENCENCENCENCENCENCENC	EEIENQRWTHIAVERNRRKQMNDYLSLLRNLMPDSY		EEAENQRMIHITVERNRRKLMNEHLAVLRSLMPESY	GGRGRRGQGTMPIDKQRREQLNDKYQILRSLIPSP-	NKSGASKDPQSVAAKNRRERISERLKILQELVPNGS	SSTQLHHMIAERRREKLNDNEQALRALLPPGT	AKRGCATHPRSIAERVRRTRISDRIRKLCELVPNML	ENLNNQYQQRLRNMFPWTAMDHSVMMAPPSY	AKRGCATHPRSIAERVRRTKISERMRKLODLVPNML	RLSOPODHIIAERKRREKLSORFIALSALVPGLO	RERGGERGSGTPODELSANHVLAERRRRREKENERFTILRSEVPFVT	EDVENCRMTHIAVERNBRROMNDHLSVLRSLMPPSY	IIDTONANNKHIRHIIILERRRRENENKCEREIRALLIPPGT		WINNIKÇESSTNTERÇERVDLGEKEDALKELIPSS-		brrachanswabercorstrestwonderstontupecys	KLSSHCPHDHIIAERKRREKLSCRFIALSALVPGLE	ARRGCATHPRSIAERERRTRISGRLKKLÇELVPNML	RSSS-QTMDHIMAERKRRQELTERFIALSATIPGLT	RNDS-QIVDHIMAERKRRQQLTQMFIALSATIPGLF	ARRGQATDSHSLAERVRREKISERMKMLQRLVPGCI	KDNERTISACSIAARERRRRITEKTCELGKLVPGGE	EKLECCEKMTNVCPSE	ARRGCATHERSIAERVERTKISERMERICDLVENME	KDSKRTISACSIAARERRRNITEKTOELGKLVPGSS	HOINNNELDETVSCASKRTIINDCYDLIKTSSAAAJ	ARRGOATNSHSLAERVRREKISERMRLLOELVPGON			The state of the Tagent of the second of the			VRRGQATDSHSLAERARREKINARMKLLQELVPGCN	ARRGCATHPRSIAERVRRTRISERMRLLEELVPNML	AKALAASKSHSEAERRRRERINNHLAKLRSLLPNTT	ARRGQATNSHSLAERVRREKISERMKFLQDLVPGCS	ENLNSQYQQRARMMEPWTAMDHSVVMAPPPY	KKLEGQPSKNLMAERRRRKRLNDRLSMLRSIVPKIS	GAASSAASKNIVSERNRRKKLNERLEALRSVVPNIS	KGREGKGTKHFATEKQRREQLNGKYKILRSLIPSP-	KKLEGQPSKNLMAERRRRRRLNDRLSMLRSIVPKIS	AKALAALKNHSEAERRRRERINGHLATLRGLVSSTI	ARRGCATDSHSLAERVRREKISERMKMLCRLVPGCI	GVMKLSTDPCSVAARERRHRISDRFKILCSMVPGGS	AKRGCATHPRSIAERVRRTRISERMRKLCELVPNML	GGASSAASKNIVSERNRRKKLNERLEALRAVVPNIT	ARRGOATDSHSLAERARREKISERMKILODLVPGCN	RRSPSHAHDHIIAERKRREKISOSFIALAALVPGLE
	PREALPLPDQVDEAIN	-Y-MPPNLAPFQAGV	LH-HAPAATKAQGAS	X DEDY & FOREX OF MORE		KMDNASLLGDALA	PKADKSSIVDEAVR	IKGKRSTSDHMHEGVK	KTDKASLLAEVIQ	VÇ-RGDÇASIIGGAIN	KIDKASILSEAIA	TKVDISTMLKEAVH	VC-RGDOASIIGGAIN	VC-RGDCASTIGGAIN		TO RODARI COALD	VC-RGDCASIIGGAIN	RMDRASVLGDAIR	VQ-RGDQASIVGGAIE	-T-KVDRASVVGDAID	KVDLVTMLEKAIS	KK-DKASILTTAKET	KOTNTADMLDEAVA	PY-PMPMAVPPGSIPL(KQTNTADMLDLAVD	KTDKASVLGDAIK		IC-REDCASIIGGAID	XX-HXSSVLTAAXEA		-T-KNDRASVVGDAID			RMDRASVLGDAIR	KQTSYADMLDLAVQ	KTDKASILRAAID	RTDRASILGEAIN	KVTGKALMLDEIIN	KMN-TAEMLHAASR	LH-HAPAATKACGAS	RCTNTADMLDLAVD	XMN-TAEMLHAASX	TT-TTGPYFSIFHNSSSSAT	KITGKAVMLDEIIN		A			KMDKASLLGDALA	KISGTALVLDEIIN	KQASTADMLDMAVG	KTDKASLLAEVIQ	KVTGKAVMLDEIIN	SY-PUPIPIPPAPUPIHPTL	KMDRTSILGDTID	KMDKASIIKDAIE	-T-KMDRASVVGDAIE	KMDRTSILGDTID	KMDKATILSKVVS	KVTGKALVLDEIIN	KMDTVSMLEEAIH	KCTNTADMLDLAVD	KMDKASIIKDAID	KVIGKALVLDEIIN	RMDRASVLGDSIR
YIKELHGQVEDLKDEVRNLEVEDCEKNTLQSIMP	YTYMOUNTSTONED TO STORE AND SHORE AN	NKVAVYPNYGYMPNWHYLPP	QKLIPFIGYPGIAMWQEMPP	YVXOLHEXVXXLEEEDOX2XS		THE REPORT AND ADDRESS	HIKTLQCTVENLEKKKRQRIQSLSVSVSPIACESAVTNPQWN	YIKHLQNRVEKLQAKRDELVKSIN	HVKELKRQT-LMIAETSSVPTESDELTVDDASDEDGK	FVRELECKLCFLGATYCEGEDGNNKK	YIKQLKEQGKKLEEESRKKNRTVIESVSLVNKR	YVKFLQLQIKLLSSDDLWMYAPIAYN	FVRELECTLOSMEGORKPNHHDTTAAGGAAGMNSS	FUXELECLUCCMNGCXXTXCEHHN		VUNCTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTO	YVKVLEQKLQELAAHKEITTTTDEDEGSDLTNNK		FVKELEQLLQCLEAQKLKLVHQGMAAQQSNKNNNEDASSSNELMM	YIRELIRTVNELKSLVEKKRIGRERFKRHKDEN	YVKELQLQVKVLAADEEWPVQG	LSSIMAEIEKLRIRNHELESRIPESSKESSATDCEISK	YVKSLOKCIEELSECCORCNCV	CPYPEFANQNPSVIPNPCSTEVPYLAP-NTIVECCSACYVSP	YIKELQNQVETLSDSQAKCTCA	YLKOLOEKVKALEEECNKRKAVESVVEVKKS	YVKOLRRKICDLEARIROMEAECORSRTPST	FVKELECLLCSLEACKRMRRKNNNNNSSNKNEDAIGFGS	IKSLIAEIEKLNIRNGGLKTLIG	VUXFLOT.OUXUT.SMSRT.GGAAAAAADD	YIRELIREVELKSLVEKKRYEKQRVKKKIKIEDEEE	· · · · · · · · · · · · · · · · · · ·	<pre></pre>	YLRCMCERVSALEEECKRKKTVESVVMVRRS	HIKGLÇTÇVÇVRKNILVETV	YVKQLQERVQELEKQNKKRSRESVILVKKSKN	YVKQLQERVRELEKRNNDNKRGPTEPVIELNKTQLLCRN	YVQSLQNQVEFLSLKLASVSPIEYDM	YVXYLCTCVGMLCLMNTLCXEN	CKLIPFIGYPGIAMWCFMPP	YIRDLOROVETLSDCOARCTOS	YVKYLOTCIGMICIMNTLCKED	TESGAFKLIKENPIPRSKKPRWENNNNNNNKRGG	YUCSLCCCUEFLSNKLATUNP	VMXPTTPXTNNT.OOPAUXQPDSNMA		<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>			HVQSLQRQVEFLSMXLAAVNPR	YIKDLQKQFKNLSDKRAKCKCI	HVKELKRQT-SLIAETNPVPTESDELTVDTT-DEDGR	YVQSLQRQVEFLSMKLATVNP	CCPEPYEGNCNPPHIPTPCSTYVPESAPINAALDLPSACYAS	YMKELLERIAKLQEETMEEEGKNQIH	YIQKLQEQERIIQSEIVELESGMMVEKKNPNSYEFEH	YIRELLRTVNELKLLVEKKRYGRERCKRQKAED	YMKELLERINKLQEEEV-EEGTSQQN	QVKELQRNAMEASKGLLIPTDFDEVEVEP	YVQSLQNQVEFLSMKLASVSPFFFDF	YVKFLKACIWLHCTLMMNYDHVNN	YIKDLCKCFKNLSEKRANCKCI	YIEHLHEGERRIGDEIMELESEKLKNPIIAAAGDNDFE	YICSLORCVEFLSMKLEAVNS	YVKELKERLAVLEEESKKTKALPTVVLNKAE

Figure 2. Continued

Figure 3. Phylogenetic relationship and gene structure of the bHLH genes. Phylogenetic tree was constructed with MEGA 6.0 on a multiple alignment of 79 amino acid sequences of bHLH genes from *Arachis duranensis* Exon/ intron structure of bHLH genes are represented by boxes and black lines, respectively.

Figure 4. Phylogenetic relationship and gene structure of the bHLH genes. Phylogenetic tree was constructed with MEGA6.0 on a multiple alignment of 72 amino acid sequences of bHLH genes from *Arachis ipaënsis*.

Protein	Chromosome Number	Chromosom (bi	al Location	Ded	uced Pol	ypeptide	Subcellular Localization		
		Start	End	Length (aa)	рІ	MW			
AdbZIP1	A06	67093845	67094858	495	7.07	54713.19	Nucleus		
AdbZIP2	A07	72015371	72018639	322	5.94	35914.02	Nucleus		
AdbZIP3	A10	95293270	95294273	316	5.03	33962.22	Nucleus		
AdbZIP4	A10	104633025	104633360	212	5.7	24810.41	Nucleus		
AdbZIP5	A01	104038428	104038856	217	8.48	24519.65	Nucleus		
AdbZIP6	A02	45495034	45497618	443	6.06	48807.58	Nucleus		
AdbZIP7	A10	104137408	104138555	800	5.84	86930.94	E.R		
AdbZIP8	A03	21151650	21152954	304	5.65	33778.3551	Nucleus		
AdbZIP9	A08	1090955	1091461	168	7.1	19345.84	Nucleus		
AdbZIP10	A08	32533691	32536893	332	5.3	37390.56	Nucleus		
AdbZIP11	A05	4161574	4162581	224	9.9	24845.75	Nucleus		
AdbZIP12	A06	104086507	104089154	373	5.18	40440.98	Nucleus		
AdbZIP13	A07	23354880	23357810	225	9.13	25954.56	Nucleus		
AdbZIP14	A03	4,793,469	4,793,906	163	6.12	18187.23	Nucleus		
AdbZIP15	A06	7,343,727	7,344,167	146	163 6.12 18187.23 Nuc 146 5.78 16384.81 Nuc 160 6.14 17947.95 Nuc 224 0.0 24845.75 Nuc				
AdbZIP16	A03	134,132,232	134,132,612	160	63 6.12 18187.23 Nuc 46 5.78 16384.81 Nuc 50 6.14 17947.95 Nuc 24 9.9 24845.75 Nuc				
AdbZIP17	A05	4,161,574	.4,162,581	224	3 6.12 18187.23 Nuc 6 5.78 16384.81 Nuc 0 6.14 17947.95 Nuc 4 9.9 24845.75 Nuc 8 8.01 18402.87 Nuc				
AdbZIP18	A06	16,421,562	16,422,038	158	8.91	18493.87	Nucleus		
AibZIP1	B03	135171129	135171510	155	6.22	17528.52	Nucleus		
AibZIP2	B04	130023980	130024291	224	4.98	26262.69	Nucleus		
AibZIP3	B05	101761857	101762086	234	4.86	26920.53	Nucleus		
AibZIP4	B05	1567450	1572508	388	5.72	41074.03	Nucleus		
AibZIP5	B07	106034150	106034580	164	7.1	18889.34	Nucleus		
AibZIP6	B08	25788300	25790824	307	7.21	34005.71	Nucleus		
AibZIP7	B10	119022617	119023360	327	5.11	35139.44	Nucleus		
AibZIP8	B10	130798698	130800592	800	5.89	86979.07	E.R		
AibZIP9	B10	131256375	131256710	216	6.04	25239.89	Nucleus		
AibZIP10	B03	8405762	8407205	271	6.21	29420.98	Nucleus		
AibZIP11	B10	130798698	130799838	800	5.89	86979.07	E.R		
AibZIP12	B01	704446	705030	194	5.85	22774.32	Nucleus		
AibZIP13	B01	26679598	26679918	183	9.36	21497.39	Nucleus		
AibZIP14	B02	54142154	54144616	296	5.72	33288.03	Nucleus		
AibZIP15	B03	7502032	7502526	164	6.12	18274.30	Nucleus		
AibZIP16	B03	23484533	23487428	344	5.66	39240.76	Nucleus		
AibZIP17	B08	11006331	11009532	331	5.38	37397.60	Nucleus		
AibZIP18	B09	21764782	21765285	145	5.61	16555.98	Nucleus		
AibZIP19	B06	128409215	128411175	372	5.18 40414.98 Nucleu				
AibZIP20	B06	:9,088,845	9,089,285	146	5.78	16384.81	Nucleus		
AibZIP21	B07	:106,033,813	106,034,307	164	7.10	18889.34	Nucleus		

 Table 4. AdbZIP
 and AibZIP
 proteins identified in Peanut, Chromosomal location, protein features and its localization prediction.

AdbZIP1 AdbZIP2 AdbZIP3 AdbZIP4 AdbZIP5 AdbZIP6 AdbZIP1 AdbZIP1 AdbZIP11 AdbZIP11 AdbZIP11 AdbZIP11 AdbZIP11	AdbZIP1 AdbZIP2 AdbZIP2 AdbZIP3 AdbZIP5 AdbZIP5 AdbZIP1 AdbZIP1 AdbZIP1 AdbZIP1 AdbZIP1 AdbZIP1 AdbZIP1 AdbZIP1 AdbZIP1 AdbZIP1 AdbZIP1 AdbZIP1 AdbZIP1 AdbZIP1	AdbZIP1 AdbZIP2 AdbZIP2 AdbZIP5 AdbZIP5 AdbZIP5 AdbZIP5 AdbZIP1 AdbZIP1 AdbZIP11 AdbZIP11 AdbZIP11 AdbZIP11 AdbZIP11 AdbZIP11 AdbZIP11 AdbZIP11 AdbZIP11 AdbZIP11
EVARA PVEQESSMAEVVLSSMAEVVLSSMAPWVCNHFPVLCHWPTIGSSVVGVGHPFSSIFVEPVSLFSSFVSLFSMALANDN 	L.L.RRESS.RQTIERRQ.ALCEDITRRKA.SNLTVENENT.KREKLA DIAPDLLMREHNDHYMKI.KNEAVIERS GKNERAA ESNRESS.RRSRRENG.ALLADIEMQVEKLKLENATIYKGENDV INSRDESS.RRSRRENG.ALLADIEMQVEKLKLENATIYKGENDV INSRDESS.RRSRENG.ALLADIEMQVEKLKLENATIYKGENDV INSRDESS.RRSSRENG.ALLADIEMQVEKLKLENATIYKGENDV NUMNESS.RRSSRENG.ALLADIEMQVEKLENATIYKGENDV INSRDESS.RLSSCH.RTTULERS.CONARGY INDUSK. NUMNESS.RRSRENG.CVL.PERS.SEDESS.LEGENNALPS.NNNUSD- INSRDESS.RRENG.CVL.PERS.SEDESS.LEGENNALPS.NNNUSD- INSRDESS.RRENG.CVL.PERS.SEDESS.LEGENNALPS.NNNUSS- INSRDESS.RRENG.CVL.PERS.SEDESS.LEGENNALPS.NNNUSS- INSRDESS.RRENG.CVL.PERS.SEDESS.LEGENNALPS.NNNUSS- INSRDESS.RRENG.CVL.PERS.SEDESS.LEGENNALPS.NNNUSS- INSRDESS.RRENG.CVL.PERS.SEDESS.LEGENNALPS.NNNUSS- INSRDESS.RRENG.CVL.PERS.SEDESS.LEGENNALPS.NNNUSS- INSRDESS.RRENG.CVL.PERS.SEDESS.LEGEN.NL.PS.NNNUSS- INSRDESS.RRENG.CVL.PERS.SEDESS.SUST.SET.LS. INSRDESS.RRENG.CVL.PERS.SEDESS.SUST.SET.LS. INSRDESS.RRENG.CVL.PERS.SEDESS.SUST.SET.LS. INSRDESS.RRENG.CVL.PERS.SEDESS.SUST.SET.LS. INSRDESS.RRENG.CVL.PERS.SED.SET.LS. INSRDESS.RRENG.CVL.PERS.SET.DESS.SET.DESS.SET.SET.LS. INSRDESS.RRENG.CVL.PERS.SET.DESS.SET.SET.LS. INSRDESS.RRENG.CVL.PERS.SET.DESS.SET.DESS.SET.SET.LS. INSRDESS.RRENG.CVL.PERS.SET.DESS.SET.SET.SET.SET.SET.SET.SET.SET.SET.	TSSSASEHRVDRLIKTEILAETLADLANLAMREATASRSTHAPHETRHSHSDLSSAPIPGEAIAGQQLDERSVACNSEQ-
TTQNPLYMVQQPWLFFVPDFGNGQPAPPSIGLIDKKDELSLGKQCSSSLSINT BIEDIRQIGGLG-DLDIFVNDINN-CONNSLHTPTMACNNIN-NDNNKEQLS- NHPGIGGLG-DLDIFVNDINN- CHIPGGELSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS		

Figure 5. Multiple alignment of 18 AdbZIP TFs of groundnut

P113 P119 P119 P119 P119 P119 P119 P119	2019 2019 2019 2019 2019 2019 2019 2019	22192 22192 22192 22195 22195 22195 221915 221915 221911 221914 2
T_CHIHDEETEETTANLOUDS NULL PTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	DQRRRRNDGSNRESARRSRNERQCHLDELINGQUELLKRENNGLISTIGITTELIVLNIEGEN NERKHERNISNRESARRSRNERQCHLDELINGQUEVLERRENNELISTINTYGENUTYGEN NERKHERNISNRESARRSRNERQCHLDELINGQUEVLERRENNELIDTINNUSESHDRVLGEN DERKKRENSRESARRSRNERQCHLDELINGQUEVLERRENNELIDTINNUSESHDRVLGEN DERKKRENSRESARRSRNERQCHLDELINGQUEVLERRENNELIDTINNUSESHDRVLGEN DERKKRENSRESARRSRNERQCHLDELINGQUEVLERRENNELIDTINNUSESHDRVLGEN DERKKRENSRESARRSRNERQCHLDELINGQUEVLERRENNELIDTINNUSESHDRVLGEN DERKKRENSRESARRSRNERQCHLDELINGQUEVLERRENNELIDTINNUSESHDRVLGEN DERKKRENSRESARRSRNERQCHLDELINGQUEVLERRENNELIDTINNUSESHDRVLGEN DERKKRENSRESARRSRNERQCHLERRENNELIGLINGGUEVLERRENNELIDTINNUSESHDRVLGEN DERKKRENSRESARRSRNERQCHLERRENNERQLINGGUEVLERRENNELIDTINNUSESHDRVLGEN DERKKRENSRESARRSRNERQCHLERRENNENGLINGGUEVLERRENNELIDTINNUSESHDRVLGEN DERKKRENSRESARRSRNERQCHLERRENNENGLINGGUEVLERRENNENGLINGGUEVER DERKKRENSRESARRSRNERQCHLERRENNENGLINGGUEVLERRENNENGLINGGUEVER DERKKRENSRESARRSRNERQCHLERRENNENGLINGGUEVLERRENNENGLINGGUEVER DERKKRENSRESARRSRNERQCHLERRENNENGLINGGUEVLERRENNENGLINGGUEVER DERKKRENSRESARRSRNERQCHLERRENNENGLINGGUEVLERRENNENGLINGGUEVER DERKKRENSRESARRSRNERQCHLERRENNENGLINGGUEVLERRENNENGLINGGUEVER DERKKRENSRESARRSRNERQCHLERRENNENGLINGGUEVLERRENNENGLINGGUEVER DERKKRENSRESARRSRNERQCHLERRENNENGLINGGUEVLERRENNENGLINGGUEVER DERKKRENSRESARRSRNERQCHLERRENNENGLINGGUEVLERRENNENGLINGGUEVER DERKKRENSRESARRSRNERQCHLERRENNENGLINGGUEVLERRENNENGLINGGUEVER DERKKRENSRESARRSRNERQCHLERRENNENGLINGGUEVLERRENNENGLINGGUEVER DERKKRENSRESARRSRNERQCHLERRENNENGLINGGUEVER DERKKRENSRESARRSRNERQCHLERRENNENGLINGGUEVER DERKKRENSRESARRSRNERQCHLERRENNENGLINGGUEVER DERKKRENSRESARRSRNERQCHLERRENNENGLINGGUEVER DERKKRENSRESARRSRNERQCHLERRENNENGLINGGUEVER DERKKRENSRESARRSRNERQCHLERRENNENGLINGGUEVER DERKKRENSRESARRSRNERQCHLERRENNENGLINGGUEVER DERKKRENSRESARRSRNERQCHLERRENNENGLINGGUEVER DERKKRENSRESARRSRNERQCHLERRENNENGLINGGUEVER DERKKRENSRESARRSRNERQCHLERRENNENGLINGGUEVER DERKKRENSRESARRSRNERQCHLERRENNENGLINGGUEVER DERKKRENSRESARRSRNERGGUEVER DERKKRENSRESARRSRNERGGUEVER DERKKRENSRENGUEVER	PENCENTRY PTEMM - GANNANTACT HAETAN FI PENCENTRY PTEMM - GANNANTACT HAETAN FI NE SEARAN SAN FILL SAN FILL SAN FILL SAN FILL SAN SAN FIL

Figure 6. Multiple alignment of 21 AibZIP TFs of groundnut

Figure 7. Phylogenetic relationship and gene structure of the bZIP genes. Phylogenetic tree was constructed with MEGA6.0 on a multiple alignment of 18 amino acid sequences of bZIP genes from *Arachis duranensis* Exon/intron structure of bZIP genes are represented by boxes and black lines, respectively.

Figure 8. Phylogenetic relationship and gene structure of the bZIP genes. Phylogenetic tree was constructed with MEGA6.0 on a multiple alignment of 21 amino acid sequences of bZIP genes from *Arachis ipaënsis*

	Chr A	f.map	Chr A2.map		Chr All.map		Chr A4.map		Chr A5.map		Chr Aš.map		Chr A7.map		Chr A8.map		Chr A8.map		Chr A10.map	
ľ	ABAUR	-13	Advicité Advicité Advicité	6.0 11.0	Advilieto Advilieto Advilieto	139 448 438			Adhiusz Adhiusz Adhiusz	110 110 430	Adrenii Adrenii Adrenii	239	Addition	13	LAKIN		AdvEND AdvEND AdvEND	19 48 19	AdvENT AdvENE	100
3	Advert Advert Advert	23# 359 337			AdvExts AdvExts AdvExts AdvExts AdvExts	110 110 110 310	ABRUKO ABRUKO	38 38	Advictor	510	AddUKT AddUKTS	3.0			Advicion Advicion Advicion Advicion	15.30 17.40 23.00			Adress	-2.9
9	6					1									ABILIS ABILIS ABILIS ABILIS	7.8 7.8 7.8 2.8	Advicito	-3.7		
			Adress	6.N 6.N			AMUST	2.0					Adrense Adrense Adrense Adrense	95.29 57.79 6.19 6.19	Addebit	6.19			Advention	-9.4
10	Adress	7.0	AddrExt1 AddrExt2	8.5					Addition	**			Adreko Adreko Adreko	8.9 7.9 7.9 7.9						
۱.	Addition	12.10				I 1				I .		I 1	Addition	10.49			Add(1/0	-9.9		I .
1					ABERS	-123			AMUS	194.5									Adribit	1.54
1	5				Adviliet Adviliet Adviliet Adviliet	1173 183 193 193			AdHUS	16.9	Adres	11.9					Advilikît Advilikît Advilikî Advilikî	112.40 112.40 119.70 119.90		

Figure 9. Distribution of 79 bHLH genes from *Arachis duranensis* on peanut chromosomes and physical location of each bHLH gene on the ten chromosomes from each species (positions in cM).

Figure 10. Distribution of 72 bHLH genes from *Arachis ipaensis* on Peanut chromosomes and physical location of each bHLH gene on the ten chromosomes from each species (positions in cM).

Figure 12. Distribution of 21 bZIP genes from *Arachis ipaensis* on Peanut chromosomes and physical location of each bZIP gene on the ten chromosomes from each species (positions in cM).

Figure 13. Phylogenetic relationship and gene structure of the bHLH genes. Phylogenetic tree was constructed with MEGA6.0 on a multiple alignment of 79 amino acid sequences of bHLH genes from *Arachis duranensis*. Exon/ intron structure of bHLH genes are represented by boxes and black lines, respectively.

Figure 14. Phylogenetic relationship and gene structure of the bHLH genes. Phylogenetic tree was constructed with MEGA6.0 on a multiple alignment of 72 amino acid sequences of bHLH genes from *Arachis ipaënsis* Exon/intron structure of bHLH genes are represented by boxes and black lines, respectively

Figure 15. Phylogenetic relationship and gene structure of the bZIP genes. Phylogenetic tree was constructed with MEGA6.0 on a multiple alignment of 18 amino acid sequences of bZIP genes from *Arachis duranensis* Exon/intron structure of bZIP genes are represented by boxes and black lines, respectively.

Figure 16. Phylogenetic relationship and gene structure of the bZIP genes. Phylogenetic tree was constructed with MEGA6.0 on a multiple alignment of 21 amino acid sequences of bZIP genes from *Arachis ipaënsis* Exon/intron structure of bZIP genes are represented by boxes and black lines, respectively

Figure 17. Schematic representation of conserved motifs in the AdbHLH proteins predicted by MEME. Each motif is represented by a number in the colored box. The black lines represent non-conserved sequences.

Figure 18. Schematic representation of conserved motifs AibHLH proteins predicted by MEME. Each motif is represented by a number in the colored box. The black lines represent non-conserved sequences.

 Table 6: Conserved motif logos identified in AdbHLH proteins using MEME tool

 Table 7: Conserved motif logos identified in AibHLH proteins using MEME tool

Name	Motif Logo
1	PERREKRY SNRESABRSR RKORY ER SORVER LEED
2	STRVALTTOOX CESSY RAGYEE SRL SLN IX
3	TALSLER SELVERNO CONSUVEFLASS SECTION SWVDEFLASS
4	EEVWKO INLASLIO STRPSSSSSSSSSSAAAF I FOOFLARPFT INTTIN
5	QQQKLCEAAVLN-QQKKKSALYRTFTAPF

Table 8: Conserved motif logos identified in AdbZIP proteins using MEME tool

Table 9: Conserved motif logos identified in AibZIP proteins using MEME tool

Name	Motif Logo
1	DERKEN SURESARRS AND SOUTH
2	
3	
4	¹ ssswydefeldessere fegydaarkegdeeverstore
5	a- a- b- b- c- c- c- c- c- c- c- c- c- c

Figure 20: Control and heavy metal treated seedlings

Figure 21: Control and high temperature stress treated seedlings

Figure 22: A) Agarose gel electrophoresis of PCR amplified products under high temperature stress. B) Agarose gel electrophoresis of PCR amplified products under heavy metal stress

Figure 23: Expression profile of *AdbHLH* and *AibHLH* genes obtained by RT-qPCR of Cadmium chloride treated shoot samples.

CONCLUSION

Plants growing in their natural habitats are often challenged simultaneously by multiple stress factors, both abiotic and biotic. Several families of plant TFs play significant roles in translating abiotic stress signals into changes in gene expression. So far, research into TFs that regulate abiotic stress responses has mainly focused on single TFs and their isolated function. The present study comprising genome- wide analysis of bHLH and bZIP TFs, detailed protein features, motif composition, multiple sequence alignment, phylogenetic analysis, gene structure, chromosomal location and expression analysis under high temperature and heavy metal stress provides valuable data for further functional analysis to develop multi stress tolerant varieties in groundnut.

CONFLICTS OF INTEREST

The authors declare that they have no potential conflicts of interest.

REFERENCES

Agati, G., Biricolti, S., Guidi, L., Ferrini, F., Fini, A., & Tattini, M. (2011). The biosynthesis of flavonoids is enhanced similarly by UV radiation and root zone salinity in L. vulgare leaves. *Journal of plant*

Figure 24: Expression profile of *AdbZIP* and *AibZIP* genes obtained by RT-qPCR of high temperature treated shoot samples.

physiology, 168(3), 204-212.

- Atchley, W. R., Terhalle, W., & Dress, A. (1999). Positional dependence, cliques, and predictive motifs in the bHLH protein domain. *Journal of molecular evolution*, 48(5), 501-516.
- Dong, Y., Wang, C., Han, X., Tang, S., Liu, S., Xia, X., & Yin, W. (2014). A novel bHLH transcription factor PebHLH35 from Populus euphratica confers drought tolerance through regulating stomatal development, photosynthesis and growth in Arabidopsis. *Biochemical and biophysical research communications*, 450(1), 453-458.
- Ferre-D'Amare, A. R., Pognonec, P., Roeder, R. G., & Burley, S. K. (1994). Structure and function of the b/HLH/Z domain of USF. *The EMBO journal*, *13*(1), 180-189.
- Goding, C. R. (2000). Mitf from neural crest to melanoma: signal transduction and transcription in the melanocyte lineage. *Genes & development*, 14(14), 1712-1728.
- Hall, T., Biosciences, I., & Carlsbad, C. (2011). BioEdit: an important software for molecular biology. *GERF Bull Biosci*, 2(1), 60-61.
- Hu, W., Yang, H., Yan, Y., Wei, Y., Tie, W., Ding, Z., & Li, K. (2016). Genome-wide characterization and

analysis of bZIP transcription factor gene family related to abiotic stress in cassava. *Scientific reports*, 6(1), 1-12.

- Kilian, J., Peschke, F., Berendzen, K. W., Harter, K., & Wanke, D. (2012). Prerequisites, performance and profits of transcriptional profiling the abiotic stress response. *Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms*, 1819(2), 166-175.
- Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. *Molecular biology and evolution*, 33(7), 1870-1874.
- Ledent, V., & Vervoort, M. (2001). The basic helix-loophelix protein family: comparative genomics and phylogenetic analysis. *Genome research*, *11*(5), 754-770.
- Lindemose, S., O'Shea, C., Jensen, M. K., & Skriver, K. (2013). Structure, function and networks of transcription factors involved in abiotic stress responses. *International journal of molecular sciences*, 14(3), 5842-5878.
- Luo, X. P., Zhao, H. X., Xue, J., Li, C. L., Chen, H., Park, S. U., & Wu, Q. (2016). Cloning of two basic helixloop-helix transcription factor genes from Tartary buckwheat (Fagopyrum tataricum) and their expression under abiotic stress. *Turkish Journal of Biology*, 40(6), 1192-1201.
- Massari, M. E., & Murre, C. (2000). Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. *Molecular and cellular biology*, *20*(2), 429-440.
- Nakashima, K., Ito, Y., & Yamaguchi-Shinozaki, K. (2009). Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and

grasses. Plant physiology, 149(1), 88-95.

- Rejeb, I. B., Pastor, V., & Mauch-Mani, B. (2014). Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms. *Plants*, *3*(4), 458-475.
- Simionato, E., Ledent, V., Richards, G., Thomas-Chollier, M., Kerner, P., Coornaert, D., ... & Vervoort, M. (2007). Origin and diversification of the basic helix-loop-helix gene family in metazoans: insights from comparative genomics. *BMC evolutionary biology*, 7(1), 1-18.
- Song, X. M., Huang, Z. N., Duan, W. K., Ren, J., Liu, T. K., Li, Y., & Hou, X. L. (2014). Genome-wide analysis of the bHLH transcription factor family in Chinese cabbage (Brassica rapa ssp. pekinensis). *Molecular genetics and genomics*, 289(1), 77-91.
- Sonnenfeld, M. J., Delvecchio, C., & Sun, X. (2005). Analysis of the transcriptional activation domain of the Drosophila tango bHLH-PAS transcription factor. *Development genes and evolution*, 215(5), 221-229.
- Sun, X. H., Copeland, N. G., Jenkins, N. A., & Baltimore, D. (1991). Id proteins Id1 and Id2 selectively inhibit DNA binding by one class of helix-loop-helix proteins. *Molecular and cellular biology*, *11*(11), 5603-5611.
- Xu, P., Jiang, L., Wu, J., Li, W., Fan, S., & Zhang, S. (2014). Isolation and characterization of a pathogenesis-related protein 10 gene (GmPR10) with induced expression in soybean (Glycine max) during infection with Phytophthora sojae. *Molecular biology reports*, *41*(8), 4899-4909.