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Abiotic stress is defined as the negative impact of non-living factors on living organisms in a
specific  environment.  An unfavourable  environmental  condition comprising extreme low and
high temperature, salinity,  drought,  water logging, heavy metals etc. pose a complex set of
stress condition. Plant responses to those environmental stresses are also complex. The effects
of stress are usually measured in terms of plant survival, crop yield, growth (biomass) or primary
assimilatory  processes  which  are  related  to  overall  growth  of  plants.  Various  physiological
stimuli  and/or stresses control  the synthesis of phytohormones in many ways.  Again all  the
molecular biological phenomenon including growth and development of the plants are controlled
by the phytohormones at very low concentration.  During abiotic stress the biosynthesis and
accumulation of different molecules thought to have protective functions in the cells. Some plant
growth promoting rhizobacteria  (PGPR) may exert  a direct  stimulation on plant  growth and
development  by  providing  plants  with  some  of  the  phytohormones.  Among  the  all  abiotic
stresses salinity limits the crop’s growth and productivity worldwide. Salinity affects many of the
physiological processes starting from seed germination, enzymatic activity, food production to
DNA and protein  synthesis.  Many of  the  researchers  work  on  the  effect  of  salinity  on  the
physiological  activity  of  the  plants,  but  the mechanism of  phytohormones response against
salinity are still  not assembled in a systematic manner. An attempt is made to establish the
comprehensive mechanism of phytohormones responses against salt stress and to know about
the  adaptation/tolerance  of  plants  in  the  molecular  level  as  well  as  systematic  approaches
during this post genomic era with 164 references.
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Mechanism of phytohormone responses against salt stress  ...

Plants are constantly confronting a variety of abiotic

stresses (e. g. drought,  salinity, extreme high and low

temperature, metal toxicity etc.) that negatively influence

plant  growth,  productivity,  reproductive  capability  or

survival.  Plant responses to that stresses are complex

and  involve  numerous  physiological,  molecular  and

cellular  adaptations.  When  plants  are  exposed  to  a

variety  of  abiotic  stresses  such  as  salinity,  drought,

temperature,  the  growth  of  the  plants  and  biomass

production  are  unexpectedly  changed  (Ahmad  et  al.,

2019).  Among  abiotic  stresses,  salinity  limits  crop

growth  and productivity  worldwide  (Abdel  Latef  et  al.,

2020).  Many  physico-chemical  processes  in  plants

including  seed  germination  and  seed  establishment

(Dash  et al.,  2001), enzymatic activities (Seckin  et al.,

2009),  transcription  and  translation  (Anuradha  et  al.,

2001)  are  obstructed  by  salinity.  According  to  some

scientist, one-third of the world’s food producing areas

are salt-affected (Gregory et al., 2018). Saline areas are

expanding  at  a  rate of  10% annually  which  would be

amplified  by  increased  global  warming  and  climate

changes  (Shrivastava  et  al.,  2015).  Initially  osmotic

stress in plants is caused by salinity and the metabolic

processes are directly affected (Khan et al., 2019). Later

the over-accumulation of NH+  + Cl –  ions in cells cause

ionic toxicity due to salinity (Khan  et al.,  2019). Water

insufficiency and nutrient such as Ca2+,  K+, Fe2+ and Zn2+

deficiency  within  plants  due  to  salinity  caused  to

disruption  of  photosynthesis  and  oxidation  stress

(Rahman  et  al.,  2019).  Salinity  reduces  leaf  area,

stomatal conductance and chlorophyll levels in the plant

and generates reactive oxygen species (ROS) (Khan et

al.,  2018);  it  also  reduces  germination  percentage,

length of root-shoot and fresh weight of plant tissues (El-

Shaieny, 2015; Nasri  et al., 2017). In plants, there are

various modified and adaptive methods of salt tolerance

to win the worst conditions of high soil salinity (Wang et

al.,  2019).  Some  researchers  used  plant  growth

regulators  (PGRs)  to  alleviate  the  adverse  effect  of

salinity on plants (Khan et al., 2019; Khan et al., 2020).

In  both  non-stress  and  stressful  conditions,  plants

synthesized  phytohormones,  also  known  as  PGRs,

which  are  small  bio  active  compounds  that  can  work

locally or transport to the distant sites of the plant body

to  accelerate  growth  and  development  (Peleg  et  al.,

2011;  Iqbal  et  al.,  2014).  PGRs  can  mitigate  the

negative  effects  of  salt  stress  by  increasing  seed

germination, growth, development and yield (Bielach et

al., 2017). Auxin, Cytokinin (CK), Gibberellic acid (GA),

Abscisic acid and ethylene play crucial roles during high-

salinity exposure and their responses are supported by

other hormones like Salicylic acid (SA), Jasmonate (JA)

Triazoles (Fahad et al., 2015).

This  review  discusses  about  the  mechanism  of

phytohormone actions  as  well  as  responses  of  plants

under salt stress condition.

Response of auxin against salinity

Auxin plays  a  crucial  role  as a plant  development

propeller  of  various physiological  processes  (Teale  et

al.,  2006;  Zhao,  2010);  it  regulates  root-shoot

architecture,  lateral  and  adventitious  root  formation,

controlling  of  root-shoot  meristems,  establishment  of

apical  dominance,  leaf  morphogenesis,  flowering,  and

senescence (Aloni et al., 2003; Okushima et al., 2005).

Most of the plants produce IAA from tryptophan via

IPA  and  IAN.  Salinity  can  affects  some the  enzymes

activity in this pathway (Fig. 1). Various studies revealed

that  salt  stress  conditions  reduce  auxin  levels  and

decreased expression of auxin transporter (Park, 2007;

Du  et al.,  2012; Liu  et al.,  2015) (Fig. 1). Auxin efflux

carriers regulate meristem size during slats stress (Liu,

2015).  Exogenous  applications  of  indole  acetic  acid

(IAA)  increased  salt-stress  tolerance  in  several

commercial  crops  (Ashraf  and  Foolad,  2005;  Ashraf,

2010). In  Pisum  sativum L., foliar applications of auxin

has  enhanced  photosynthetic  capacity  reduce  loss  of

water;  mitigate  negative  regulation  induced  by  salt

stress  (Husen  et  al.,  2016).  IAA  treated  corn  plants

enhanced  membrane  permeability  and  increased

nutrient uptake (Kaya  et al., 2010). In wheat seed, the

effect of delayed germination caused by high salt levels

can  be  reversed  by  IAA  pretreatment  (Ashraf  and

Foolad,  2005).  Salinity  increased the Na+  content  and

reduces K+, Ca2+, Mg2+ content in root, stem, leaf, and

seed of faba bean plants. IAA treated faba bean plant

reduced the accumulation of Na+  content and improves
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the accumulation of  K+, Ca2+, Mg2+ content under salt

stress.  (Abdel  Latef  et al.,  2021).  Foliar  application of

IAA  has  changed  expression  pattern  of  proteins  for

better salt adaptation (Abdel Latef et al., 2021). 

Similarly  exogenous  application  of  IAA has  shown

positive effects in different crops under salt stress such

as Zea mays (Keya et al., 2010), Oryza sativa (Javid et

al.,  2011),  Solanum lycopersicum (Alam  et  al.,  2020),

Solanum  tuberosum (Khalid  and  Aftab,  2020)  Carica

papaya (Sá et  al.,  2020).  Changing  of  the  protein

expression  pattern  showed  the  ability  of  a  plant’s

tolerance to  salt  stress and plants  synthesize  specific

polypeptide under salt stress for adaptation (Bavei et al.,

2011). Compared to non-stressed plant, protein related

to  salt  stresses  show  a  positive  indicator  of  salinity

stress.  (Sobhania  et  al.,  2016).  Several  researchers

showed  that  over  expression  of  indole  pyruvic  acid

(IPyA)  pathway  in  several  species  increase  salt

tolerance (Kim, 2013; Yan, 2016).

There are large number of auxin responsive genes

which  were  identified  and characterized  from different

plant species, such as soybean, Arabidopsis sp and rice

(Hagen  and  Guilfoyle,  2002).  In  cucumber,  YUCCA

genes  are  expressed  at  high  and low  temperature  in

response to salinity. Over expression of CsYUC11 gene

has  increased  higher  salinity  tolerance  (Yan,  2016).

These auxin responsive genes have been divided into

three gene families-i)  Auxin (AUX/IAA),  ii)  GH3  and iii)

small auxin-up RNA (SAUR) gene families (Guilfoyle et

al.,  1993).  These  novel  genes  have  involved  in  salt

stress  responses  and  by  which  researchers  can  set

further  genetic  strategies  to  improve  more  stress

tolerance cultivars (Zhu, 2002).

Response of gibberellins against salinity

Gibberellins help seed germination, leaf expansion,

stem elongation and flowering (Magome  et al.,  2004).

During  abiotic  stress  condition,  plants  accumulated

gibberellic acid (GA) rapidly (Lehmann et al., 1995). GA3

was helpful  to  enhance the growth of  wheat  and rice

under  saline  conditions  (Parasher  and  Varma,  1988;

Prakash  and  Prathapasenan,  1990).  Stomatal

resistance in tomato was reduced and water use in plant

was enhanced by GA3  treatment at low salinity (Maggio

et al.,  2010).  With poultry manure,  application of  GAs

has improved the growth and salinity tolerance of piper

(Capsicum  annuum)  plants  (Al  Taey,  2017).  Wheat

seeds  treated  with  GAs  increased  germination  and

seedling  parameters  under  salt  stress  (Abido  et  al.,

2019).  Tomato  plant  treated  with  GA3  increased  leaf

water content, stomatal density and chlorophyll content

by alleviating salinity stress (Jayasinghe  et  al.,  2019).

Maize seed treated with  GAs (5 mgL-1)  increased the

root-shoot length and water content in tissues under salt

stress  (Ghodrat  and  Rousta,  2012).  Conformational

changes  of  gibberellin  insensitive  dwarf  (GID1) was

induced  by  binding  of  bioactive  GA to  GID1  and  has

recruited DELLA growth repressor protein to form a GA-

GID1-DELLA  complex  and  interaction  of  E3 ubiquitin

ligase  F-box protein  SLEEPY 1  (SLY1)  with  DELLAs,

26s proteosome degraded DELLA activity  (Bao  et  al.,

2020).  DELLA  protein  SLR1 was  survived  under  salt

stress by inhabiting plant growth (Achard  et al., 2006).

Plants have increased their salt tolerance ability through

retarding the growth by the activity of related genes like

AtGA20X7 (Magome et al., 2008), OSGA20X5 (Shan et

al., 2014) OSMYB92 (Zhu  et al., 2015) responsible for

GA metabolism. Over expression of GA catabolic gene

CYP7D8L  in  transgenic  plants  was  reduced  GA

accumulation,  increase  high  soluble  sugar  and

chlorophyll  content  to  enhance plant  tolerance  to  salt

stress (Zhou et al., 2020). Under salt stress, rice plants

have increased their tolerance by ectopic expression of

PtCyP714A3  (Populus  trichocarpa)  encoding  unique

group  of  CyP  mono-oxygenase  which  regulates

deactivation of GA (Wang et al., 2016). In  Arabidopsis,

ectopic expression of G(h)PLATZ1 was helped quicker

germination than in wild type and has suppressed the

transcription  of  ABI4  (Zhang  et  al.,  2018).  Under  salt

stress, GhPLATZ1-mediated germination was depended

on GA: ABA ratio (Zhang et al., 2018).

Response of cytokinin against salinity 

Cytokinin (CKs) promotes cell division, affects apical

dominance, auxiliary bud growth, chloroplast biogenesis,

nutrient  mobilization,  leaf  senescence,  shoot

differentiation,  Photo-morphogenic  development,

anthocyanin  production,  vascular  differentiation  (Mok

and  Mok,  2001;  Davies,  2004).  CKs  has  helped  to

increase  plant  resistance  power  to  salinity  and  high
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temperature  (Barciszewski  et  al.,  2000).  Seed treated

with cytokinin has increased plant’s salt tolerance (Iqbal

et al., 2006a). By interacting with other plant hormones,

cytokinin  has enhanced salt  tolerance in wheat  plants

(Iqbal  et  al.,  2006b).  Exogenous  application  of  kinetin

has  inhibited  negative  effect  of  salinity  stress  on  the

growth of wheat seedlings (Naqvi  et al., 1982). Prior to

salt stress, if the potato plants are treated with kinetin, it

alters  salt-related  growth  inhibition  (Abdullah  and

Ahmad,  1990).  Under  salt  stress,  Na+  accumulated  in

plants  to  make  the  disorder  of  ion  homeostasis,  the

imbalance of K+ / Na+ ratio causes oxidative stress (Song

and Wang, 2015; Guo et al., 2018; Liu et al., 2017). Ion

stress  and  oxidative  stress  caused  leaf  senescence

(Han et al., 2011; Li et al., 2012) in plants. Cytokinin has

the role against the negative effect of salt on plants such

as  radish  and tobacco  (Vnakova  et  al.,  2010).  Some

studies  have  shown  that  tomato  seedling  measures

cytokinin  level  under  salt  stress  (Keshishian  et  al.,

2018). If INCYDE is sprayed on tomato under salt stress

to  increase  antioxidant  enzymes  activity,  it  enhances

plant salt tolerance (Aremu  et al., 2014). On the other

hand when 42 bp in promoter region of IPT5 has deleted,

the  cytokinin  content  of  apple  rootstock  “robusta”  has

enhanced salt tolerance capacity (Feng et al., 2019). It

has been established that cytokinin receptor AHK1  is a

positive  regulator  of  salt  stress response (Tran  et  al.,

2007).

Response of brassinosteroid (BR) against

salinity 

BRs  regulated  many  physiological  processes  like

growth, leaf abscission, seed germination, rhizogenesis

and senescence (Sasse, 1997). Exogenous application

of  BRs  has  enhanced  growth  and  yield  in  many

economically  useful  plant  species  under  salinity.  BRs

promoted the number of ears along with their length and

weight of kernels per year in cereals (Ali  et al., 2008).

BRs  removed  negative  effect  of  salinity  to  help  seed

germination and seedling growth in rice. BRs enhanced

nitrate reductase, maintained chlorophyll level under salt

stress, and played an important role to supply nitrogen,

growth and productivity  of  plants  especially  in cereals

(Bajgur and Hayat, 2009). The impact of salt stress on

rice  growth  was  altered  by  BRs  as  a  result  level  of

pigment was restored and nitrate reductase activity was

increased (Anuradha and Rao, 2001). If leaf segments

of barley were incubated in either BR solution or water

and  then  incubated  in  0.5  M  NaCl  solution  in

presence/absence of BR, there was no effect of BR on

the leaf  cell  ultrastructure under  normal  condition and

damage on nuclei; chloroplast caused by salt stress is

altered by treatment of BR (Krishna, 2003). Some key

enzymes which are associated with BR synthesis help

plant to adopt in salt stress. Due to the over expression

of  a  BR  biosynthesis  gene  of Spinacia  oleracea,

SOCYP85A1  gene  was  amplified  and  increased  the

longevity  of  plant  against  high  salinity  (Duan  et  al.,

2017).  Under  salt  stress  condition,  tomato  plants

deficient of BR biosynthesis genes were more affected,

but  it  has  been altered  by  exogenous  BR application

(Zhu  et al.,  2016). Plants were sensitive to salt stress

due to leak of BRI 1 or BSK5 (Zhu et al., 2016; Li et al.,

2012a).  BZR1,  a  marker,  directly  repressed  the

expression of BR biosynthetic gene DWF4 which cross

the normal level at an early stress stage not soon back

to normal levels (Geng et al., 2013).

H2O2 generation  and  accumulation  of  ethylene  in

tomato,  exogenous  BR  treatment  on  cucumber  were

regulated  positively  to  promote  antioxidant  enzyme

activities under salt stress (Zhu et al., 2016; Wei  et al.,

2015). BR also helped to accumulate nitric oxide (NO)

and mitigated oxidative damage which was caused by

salt stress (Zhu et al., 2016). BR alleviated effect of salt

stress  on  plant  through  interacting  with  other  plant

hormones like ABA (Zhang et al., 2009) SA (Divi  et al.,

2010)  and  GA  (Wang  et  al.,  2019a).  Under  NaCl-

stressed conditions, oxidative damage in rice and maize

seedlings was mitigated when seed has been treated by

EBL or HBL (Özdernir et al., 2004). Seed treatment with

EBL reduced chromosomal abnormalities in root tips of

barley  plants  grown  in  a  NaCl  containing  medium,

(Tabur and Demir, 2009).  In wheat cultivars, EBL has

leaded to increase the growth of seedling and maintain

Ca2+/Na+ and K+/ Na+ ratio to promote uptake of Ca2+, K+

and reducing Na+  ,  which helped to adapt both wheat

cultivars  under  salt  stress  (Ali  et  al.,  2006).  Foliar

application of EBL to two strawberry cultivars helped to
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overcome the negative effect of salinity stress on plant

growth  and  enhanced  shoot  and  root  dry  matters,

relative water content of leaf, stomatal conductance, leaf

chlorophyll  value, macro-micro element  content in leaf

and  root  of  plants  (Karlidag  et  al.,  2011).  BRs  and

spermidine can altered the toxic effect of salt stress on

Vigna radiata plants (Mir  et al., 2015). The presence of

EBL in  nutritive  solution  under  NaCl  stress  enhanced

plant fresh weight, shoot dry weight, leaf and root water

content,  leaf  area, sugar concentration,  photosynthetic

pigments, photosynthetic rate and water use efficiency

of Cajanus Cajan plants (Durigan et al., 2011).

BR  treated  faba  bean  plant  reduced  the

accumulation  of  Na+  content  and  improved  the

accumulation of K+, Ca2+, Mg2+ content under salt stress

(Abdel  Latef  et  al.,  2021).  Under  salt  stress,  foliar

application of BR has changed the expression pattern of

protein  for  better  salt  adaptation  (Abdel  Latef  et  al.,

2021).

Response of  abscisic  acid (ABA)  against

salinity 

The abscisic  acid  (ABA)  helped  plants  to  survive

under  adverse  environmental  condition  such  as  salt

stress (Keskin  et  al.,  2010).  In  presence of  salt,  ABA

increased xylem water potential as well as water uptake

to the plant (Fricke et al., 2004). When barley roots are

exposed to the salt, ions are accumulated in vacuoles of

roots stimulation of ABA in roots which was important for

adaptation to  saline conditions (Jeschke  et  al.,  1997).

Exogenous  application  ABA  inhibited  leaf  abscission

and reduced ethylene release under salt stress in citrus

by reducing Cl- ions accumulation in leaves (Gomez et

al., 2002). ABA inhibited the deleterious effect of NaCl

and  enhances  tolerance  of  ionic  stress  in  sorghum

(Amzallag et al., 1990). 

Figure 1. Tryptophan dependent IAA pathway in plants and bacteria. Salinity affects in the asterisk regions.
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Figure 2. Effect of ethylene signaling on seed germination under salt stress. 

Figure 3. Interrelationship of phytohormone responses is represented by a schematic diagram under salt stress.

Salinity up regulated stress hormone ABA, promoted

gene to mitigate salt and osmotic stress (Wang  et al.,

2011).  The  rice  seed  treated  with  ABA  increased

seedling growth and yield under saline soil by balancing

nutrient  uptake (Gurmani  et al.,  2013; Li  et al.,  2010).

Rice treated with ABA at 10-5 M enhance osmoregulation
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by  reduced  Na+ concentration  in  cells  and  increased

proline and sugar accumulation in rice leaves under salt

stress  (Gurmani  et  al.,  2011).  ABA  also  helped  the

tolerance  power  against  salt  stress  in  wheat  plant

(Zongshuai  et  al.,  2017).  The  mustard  seeds  treated

with ABA (100 µm) enhanced germination rate by 25%

compared to the control under salt stress (Srivastava et

al., 2010).

CED1 (9 CIS EPOXYCAROTENOID DIOXYGENASE

DEFECTIVE 1) is an important protein in biogenesis of

cuticle. A mutant of CED1 protein was unable to promote

ABA biosynthesis  under  osmotic  stress  (Wang  et  al.,

2011).  During  salt  stress,  ABA  acts  as  a  signaling

molecule to suppress the growth of  lateral roots as in

quiescent  stage.  Lateral  roots  form  a  thick,  well-

developed casparian strip which has reduced diffusion

of Na+ ions through the endodermis and in presence of

Na+ ions, endodermal cells enhanced ABA signaling and

inhibited  growth  of  lateral  roots  under  high  saline

environment (Duan et al., 2013). LEA proteins produced

in an ABA-dependent  manner,  were highly hydrophilic

small  proteins,  have  an  osmoprotectant  role  against

cellular  dehydration  during  late  embryogenesis.  LEA

proteins  also  played  an  important  role  in  salt  stress

tolerance  (Bhardwaj  et  al.,  2013).  In  Arabidopsis,  51

LEP proteins were identified from nine different groups

(Hundertmark  et  al.,  2008).  Arabidopsis can  able  to

mitigate  salt  stress  by  over  activation  of  salt  stress

inducible  genes  such  as  RD29B  through  over

expression  of  AtLEA  14  which  belongs  to  the  LEA

group-2 proteins (Jia et al., 2014).

Response of ethylene against salinity

In  many  plant  species  level  of  ethylene  and  its

precursor ACC are induced by salinity and other abiotic

stresses  (Morgan and Drew,  1997).  On application  of

ethylene or ACC has enhanced plant tolerance to high

salinity  (Cao  et  al.,  2007).  Ethylene was an essential

positive  mediator  of  salinity  stress  tolerance in  maize

(Freitas  et  al.,  2018),  tomato  (Gharbi  et  al.,  2017),

grapevine (Xu et al., 2019). It is reported in grapevines

that  melatonin  involves  in  enhancing  salinity  stress

tolerance  by  inducing  MyB108A-mediated  ethylene

biosynthesis (Xu et al., 2019). Ethylene played positive

effect under salinity stress by osmotic adjustment, water

use  efficiency,  maintaining  stomatal  conductance  in

Solanum chilense (Gharbi  et al.,  2017).  Under salinity

stress, different components of ethylene signaling have

played either positively or negatively at the time of seed

germination  (Fig.  2)  and  seedling  growth  (Cao  et  al.,

2008).  For  examples,  in  Arabidopsis,  ETR1 and  ETR4

have inhibited seed germination,  but  ETR2  acted as a

positive  regulator  involves  in  enhancing  seed

germination during salinity stress conditions (Wilson  et

al.,  2014).  Under  salinity  stress,  ethylene  has

maintained  Na+  /K+  homeostasis  to  improve  tolerance

against salinity stress (Jiang et al., 2013).  Stylosanthes

humillis, a forage legume grows naturally in saline soils

and ethylene produced in seeds of the plants mitigated

the effect of salinity stress (Lovato et al., 1999; Silva et

al.,  2014; Silva  et al.,  2018).  ACC deaminase in plant

growth-promoting  Pseudomonas  fluorescens  strain

improved salinity tolerance in plants and enhanced seed

germination in wheat during salinity stress (Safari et al.,

2018). Over expressing ethylene response factors (ERF

95  and  ERF  96  )  in  seeds  of  the  transgenic  line

promoted better germination and seedling establishment

by  comparing  with  the  wild  under  salinity  stress

conditions (Wang et al., 2017).

A novel ethylene responsive transcription factor from

Lycium  clinense  Lch  ERF  helped  to  improve  salinity

tolerance  in  transgenic  tobacco  in  the  time  of  seed

germination  and  vegetative  growth  (Wu  et  al.,  2014).

ERF  109,  an  ethylene  responsive  transcription  factor

gene,  has  retarded programme cell  death  (PCD)  and

enhances  adaptation  under  salinity  in  the  wild  type

tobacco  plant  (Bahieldin  et  al.,  2016).  Ethylene along

with  other  phytohormones  like  auxin  (IAA),  cytokinin

(CK), abscisic acid (ABA) helped the plants to overcome

the adverse effect of salinity stress (Tuteja et al., 2010).

Response  of  jasmonates  (JAs)  against

salinity 

Methyl jasmonate (MeJA) and its free form jasmonic

acid  (JA)  both  are  collectively  called  as  Jasmonates

(JAs)  which  regulate  many  developmental  processes

like seed germination,  fertility,  root  growth,  ripening of

fruits and senescence (Wasternack and Hause, 2002).

Jasmonates  enhanced  defense  mechanisms  in  plants

under environmental stresses, such as low temperature,
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drought,  salinity  and  also  in  response  to  various

pathogens, insects driven wounding (Cheong and Choi,

2003). In tomato cultivars JAs level changed in response

to salt stress and in salt tolerant cultivar HF (Hell frucht

Fruhstamm). It  was observed that  JAs level  increased

from the  beginning  of  salinization,  while  salt  sensitive

cultivar  Pera  treated  with  salt  in  24h,  JAs  level

decreased  (Pedranzaini  et  al.,  2003).  Salt  tolerant

cultivar plants have high concentration of JAs than salt

sensitive cultivar plants (Kang et al., 2005). In rice root,

MeJA level was significantly increased in 200 mM NaCl

(Moons  et al.,  1997).  The inhibitory  effect  of  high salt

concentrations on growth and photosynthesis of barley

are  altered  by  pre-treatment  with  JAs  (Tsonev  et  al.,

1998). The balance of endogenous hormones such as

ABA was changed by exogenous JAs application after

salt  treatment  which  gave  the  protection  mechanisms

under  salt  stress  (Kang  et  al.,  2005).  In  barley,  the

induction of JA-responsive genes played important roles

under  salinity  (Walia  et  al.,  2006).  Arginine

decarboxylase  and  apoplastic  invertase  which  are

activated by three JA regulated genes, involve in salinity

tolerance through JAs (Walia  et al.,  2007).  Symptoms

produced  by  salinity  stress  in  soybean  seedling  are

mitigated by exogenous application of  MeJA (Yoon  et

al., 2009). In tomato, exogenous application of JAs on

mitigation of NaCl toxicity by regulating the antioxidant

metabolism,  accumulation  of  metabolite,  synthesis  of

osmolyte  was  reported  (Ahmad  et  al.,  2018).  The

pretreatment of maize seedlings with JAs removed toxic

effects of  Na2CO3  on photosynthesis  and plant growth

(Mir  et  al.,  2018).  Under  salt  stress,  exogenous

application  MeJA  enhances  the  growth  of  Limonium

bicolor (Yuan et al., 2018). Through maintaining ROS or

ion homeostasis, exogenous application of JAs removed

salt  toxicity  (Qiu  et  al.,  2014;  Farhangi-Abriz  and

Ghassemi-Golezani, 2018). In tomato, with increased K+

accumulation, the high JA-accumulation resistant mutant

exhibited adaptation under salt stress (Garcia-Abellan et

al., 2015). In tomato and rice, reduced JAs production or

accumulation  caused  hypersensitivity  under  salinity

(Abouelsaad and Renault, 2018; Kurotani  et al., 2015),

whereas elevated JAs biosynthesis helped to overcome

adverse effect of salt  stress in wheat and  Arabidopsis

(Zhao  et al.,  2014).  Due to lower Na+  accumulation in

shoots, two JAs biosynthesis rice mutants, Cpm 2 and

hebiba, were resistant to salt but there was no difference

to detect  in  roots  (Hazman  et  al.,  2015).  MYC 2,  the

master  regulator  in  JAs  signaling,  helped  plants

adaptation  to  osmotic  stress  through  activated

expression of  the ABA-inducible  genes RD 22 and at

ADH1 transcriptionally (Abe et al., 2003).

Response  of  salicylic  acid  (SA)  against

salinity 

Salicylic  acid  which  is  phenolic  in  nature,  has

regulated  many  physiological  processes  like

photosynthesis,  ethylene  production,  heat  production,

flowering, growth, nitrate metabolism (Hayat et al., 2010)

and helped the plants to protect from biotic and abiotic

stress such as salinity (Kaya et al., 2002). SA increased

resistant  power  of  wheat  seedlings  under  salinity

(Shakirova et al., 2003). After salt stress, the application

of 0.05 mM SA enhanced plant growth, accumulation of

ABA  and  protein  in  wheat  (Shakirova  et  al.,  2003).

Exogenous  application  of  SA  increased  the

photosynthetic  rate  and  regulated  the  membranes

stability  and the growth under  salinity  stress in barley

plants.  (El-Tayeb,  2005).  When  SA  added  to  the  soil

during  salt  stress,  Na+  and  Cl-  accumulation  was

decreased and also enhanced the survival rate of maize

plants  (Gunes  et  al.,  2007).  SA  caused  lower  lipid

peroxidation and membrane permeability in plant during

salt  stress  (Horvath  et  al.,  2007).  SA  treatment  has

increased H2O2 level which mitigates the adverse effects

on the oxidation damage induced by salt stress in wheat

plants (Wahid  et al., 2007). SA helped nitrogen fixation

in salt environment (Palma et al., 2013). In Arabidopsis

application  of  excess  SA  (>100µM)  exaggerated

inhibition  of  seed  germination  caused  by  salt  stress,

while  moderate  level  of  SA  (<50µM)  treatment  alters

effect  of  salt  stress  on  seed  germination  (Lee  et  al.,

2010). In tobacco, through increasing SA signaling, over

expression of AtNPR1 or MhNPR1 increased tolerance

under  oxidative and salt/osmotic  stress  (Srinivasan  et

al., 2009; Zhang  et al., 2014). The npr 1-5 mutant did

not  have  NPR1-  dependent  SA  signaling,  showing  a

hypersensitive phenotype to salinity (Jayakannan et al.,
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2015). In wheat, SA promoted growth through inhibiting

the decline of auxin and CK, maintain high ABA levels to

increase plant salt tolerance (Shakirova et al., 2003). In

Limanium  bicolor,  SA  enhanced  seed  germination  by

maintaining  a  favorable,  GA/ABA  balance  under  salt

stress (Liu et al., 2019).

Response of  strigolactones (SLs)  against

salinity

SLs  helped  symbiotic  interactions  with  fungi  and

shoot branching (Gomez-Rolban et al., 2008; Zhang et

al.,  2015).  Under  salt  stress condition a  synthetic  SL,

GR24,  has  increased  plant  growth  by  enhancing

antioxidant  enzyme  activities  and  photosynthetic

characteristics (Ma et al., 2017). In the germination and

vegetative stages, the SL-biosynthetic mutants showed

more axillary growth (Ha et al., 2013) indicated that SLs

were  positive  regulator  of  plant  salt  tolerance.  ABA

helped the plants to overcome the adverse effect of salt

stress  through  production  of  SL.  Under  salt  stress,

mycorrhiza colonized lettuce roots and ABA content was

increased by upregulation of the ABA biosynthetic gene

LsNCED2,  which  was  mediated  by  salt-induced  SL

production  (Aroca  et  al.,  2013).  In  S.  cannabina

seedings, concentration of SL was also affected by ABA

through  the  upregulation  of  CCD7,  CCD8 and  MAX2

(Rne  et  al.,  2018).  In  ABA  deficient  plants,  GR24

application restored the salt tolerance (Rne et al., 2018).

From the above discussion we may expect that there

must  be  an  interrelationship  i.e.  the  phytohormonal

cross-talk within the plants under salt stress (Fig. 3) and

plants  can  mitigate  the  stressful  condition  by  giving

responses in various ways. 

CONCLUSION

Among  the  all  major  environmental  stresses  salt

stress limits the growth and productivity of the plants. On

the  other  hand  phytohormones  can  control  plant’s

growth  and  development.  Beside  many  other

physiological functions, production of phytohormones in

plants can mitigate the salt stress condition in various

ways. The levels of phytohormones are elevated against

the salt stress among the many plants. Phytohormones

regulate  ionic  toxicity,  osmotic  stress,  oxidative  stress

and synthesis  of  many plant  genes  by controlling  the

transcription  factors  during  salt  stress  condition.  So

there  might  be  some  molecular  signaling  which  can

induce for the production of phytohormones in salinity to

combat the stressful situations. In this review we have

discussed  the  responses  of  phytohormones  during

salinity,  though  the  detail  molecular  signaling

mechanism during the salt stress condition in plants is

warranted for further research. 
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