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The  production  of  food  crops  in  sustainable  agriculture  demands  the  use  of  renewable
resources, which include the potential role of arbuscular mycorrhiza fungi (AMF) and Biological
Nitrogen  Fixation  (BNF)  for  supplying  nitrogen  (N)  for  crops.  Associative  action  of  AMF in
legumes has a great impact on root, shoot development and phosphorous uptake which results
in the enhancement of nodulation and nitrogen fixation.  Biological  nitrogen fixing crops can
contribute N to the neighbouring crops by N transfer. N compounds (NH4

+, NO3
-, amino acids,

ureides, peptides and proteins) released from nodulated roots, decomposed legume debris, or
root  exudates to soil  solution are absorbed by AM hyphae as the first  direct  pathway of  N
transfer. Absorbed N by AMF is translocated as NH4

+, amino acids, and peptides from fungal
cell to neighbouring plant cells. This transfer could involve NH4

+ and NO3
- transporters, amino

acid  permeases  and  peptide  transporters.  Plants  could  be  interconnected  by  mycorrhizal
mycelia to form common AM networks that provide the another direct pathways for N transfer
from one plant  to another.  Although the relatively  small  role of common AM networks in N
transfer, the overall AMF contributions to N transfer are considered to be of great importance for
legume and non-legume intercropping systems in sustainable agriculture.
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N2,  the  most  abundant,  comprising  78%  of  the

atmosphere,  is  not  readily  available  to  plants.  Plants

have  developed  multiple  solutions  to  associate  with

diazotrophs  in  order  to  acquire  atmospheric  nitrogen.

Diazotrophs are found in a wide variety of habitats: free-

living  in  soil  and  water,  associative  symbioses  with

grasses,  actinorhizal  association  with  woody  plants,

cyanobacterial symbioses with various plants, and root-

nodule  symbioses  with  legumes  (Dixon  and  Kahn,

2004). Symbiotic nitrogen fixers are divided in two main

groups: root-nodule bacteria and plant growth-promoting

rhizobacteria (Mus  et al., 2016). All organisms use the

ammonia  (NH3)  to  manufacture amino  acids,  proteins,

nucleic acids and other nitrogen-containing components

necessary for life. N2, which occurs in the atmosphere

and released through decomposition of organic material,

is converted to NH3 by the Biological Nitrogen Fixation

(BNF) which is considered as a fundamental process for

maintaining soil fertility and the continued productivity of

low-input  cropping  systems.  However,  the  plant  must

supply the necessary nutrients and a significant amount

of energy in the form of photosynthate that enables the

bacteria to fix atmospheric N. When the plant nutrition

(especially  phosphorus,  potassium,  zinc,  iron,

molybdenum  and  cobalt)  is  improved,  the  legume

responds  indirectly  to  the  increased  nitrogen  nutrition

resulting from enhanced nitrogen fixation. In sustainable

agriculture, poor plant nutrition can be corrected by the

inoculation with arbuscular mycorrhizal fungi (AMF).

AMF  colonize  the  roots  of  many  agriculturally

important food and bioenergy crops and could serve as

‘biofertilizers’  in environmentally sustainable agriculture

(Bücking et al., 2012). AMF is considered to be of great

importance  in  promoting  nutrient  uptake  through

mycelium  extension  outside  the  rhizosphere,  and

enlarging the area that roots have to absorb water and

nutrients (Tobar  et al., 1994; He et al., 2003; Jia  et al.,

2004; Shockley et al., 2004). 

Most herbaceous legumes of family  Papillionaceae

are  symbiotic  with  nitrogen-fixing  rhizobia  and  AMF

(Javaid,  2010).  Legume  nodulation  and  BNF  were

enhanced  when  legume  roots  were  infected  by  AMF

(Brown and Bethlenfalvay, 1988), and AM colonization

rate  was  enhanced  in  rhizobia-inoculated  legume

(Sanginga  et al., 1999). Besides satisfying their own N

needs,  legumes  can  facilitate  N  acquisition  of

neighbouring plant species (Pirhofer-Walzl et al., 2012).

The N transfer in intercropping systems is assumed to

be enhanced if N fixation by legumes can be improved

by  inoculation  with  AMF and  rhizobium  (Meng  et  al.,

2015). 

The direct transfer of N from one plant to another by

AMF mycelium could reduce the loss of  N in  the soil

(leaching and immobilization),  and also could improve

the  N  cycling  and  the  growth  of  neighboring  plant.

Therefore,  the  present  review  addresses  current

knowledge on the role of  AMF in symbiotic N fixation

and N fixed transport to the associated plant.

AMF symbiosis and rhizobia nodulation

Mycorrhizas  are  highly  evolved  mutualistic

associations between soil  fungi and plant roots (Smith

and Read, 2008; Bonfante and Anca, 2009). Based on

the  morphological  characteristics,  mycorrhizae  are

grouped  into  six  types:  ectomycorrhiza,  arbuscular

mycorrhiza,  arbutoid,  ericoid,  monotropoid  and  orchid

(Brundrett,  2002,  2009;  Smith  and  Read,  2008).

Arbuscular  mycorrhizal  fungi  (AMF)  are  obligate

symbionts which form mutualistic symbioses with about

80%  of  land  plant  species  (Smith  and  Read,  2008),

including almost all  species of  agronomic interest  and

pastoral and tropical forest (Bonfante and Genre, 2008).

The  AM hyphae  penetrate  the  root  cortical  cells  and

form specific ‘little tree-shaped’ fungal structures called

arbuscules  in  the  cortex  (Fig.1).  The  AMF  also  form

vesicles,  which  are  membrane-bound  organelles  of

varying shapes, inside or outside the cortical cells. 

Symbiotic  nitrogen  fixers  are  divided  in  two  main

groups: root-nodule bacteria and plant growth-promoting

rhizobacteria  (Mus  et  al.,  2016).  Root-nodule  bacteria

include  rhizobia  and  Frankia.  Rhizobia,  classified  into

alpha-  and  beta-proteobacteria  (Bomfeti  et  al.,  2011),

enter  into  a  symbiotic  association  with  legumes.

Rhizobia are known to be free-living bacteria, that are

able to live in the soil. When an appropriate host crop is

planted in the soil, rhizobia get entrapped within a curled

root  hair,  penetrate  the  host  cells  and  the  final  step
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involves  the  differentiation  of  rhizobium  into  N2-fixing

bacteroids housed in the cells of the nodule (Figure 1). 

Many  of  the  genes  that  encode  for  signal

transduction  and regulate the establishment  of  the N2

fixation symbiosis in plant roots are the same genes that

encode for and regulate the AMF symbiosis, which may

make the AMF symbiosis inherently more common in N2

fixers  (Antunes  et  al.,  2006;  Javaid,  2010). In  both

symbiosis,  the  two  partners  engage  in  a  complex

molecular conversation that allows AMF and rhizobia to

infect the plant cells and entice the cells to undergo the

developmental  changes necessary for establishing the

symbioses (Manchanda and Garg, 2007). Although AMF

and rhizobia colonize root tissues intracellularly during

the  symbioses,  they  stay  separated  from  the  plant

cytoplasm  by  highly  specialized  perisymbiotic

membranes  (Provorov  et  al.,  2002).  Across  these

membranes  surrounding  bacteroids  (Day  et  al.,  2001)

and  arbuscules  (Gianinazzi-Pearson,  1996,  Harrison,

1999,  Parniske,  2000),  the  nutrient  exchange  takes

place between microbes and the plant .

In the AMF-Rhizobium association, the mycorrhizal

mycelia may increase the absorption and translocation

of  nutrients  (especially  P)  through  the  network  to

rhizobium  located  on  plant  nodules.  Rhizobium  fix

nitrogen and provide it  in the form of ammonia to the

plant,  which,  in  turn,  provides  carbohydrate  to

microsymbionts  (Silveira  et  al.,  2001).  These  three

processes are interdependent  or  even tightly  coupled:

while  the  rate  of  photosynthesis  is  influenced  by  the

rates  of  N  and  P  supply,  the  rate  of  N2-fixation  is

influenced by the rates of photosynthate and P supply to

the  nodules  (Jia  et  al.,  2004).  However,  the

effectiveness  of  co-inoculation  depends  on  the

compatibility  between  interacting  partners  in  the

rhizosphere  that  varies  greatly  with  physicochemical

characteristics  of  soil,  test  microorganisms,  plant

genotypes,  and  substances  exuded  from  host  plant

species (Javaid, 2010). Bacterial and AMF compatibility

can alter symbiotic efficiency because the combination

of  AMF  and  bacterial  strains  can  either  reduce  or

increase efficiency in certain bacterial strains (Bonfante

and Anca, 2009). Some strains of bacteria can positively

influence symbiosis with AMF (Frey-Klett  et al.,  2007).

For  example,  Xie  et  al. (1995)  demonstrated  that  the

nodulation  factors  produced  by  Bradyrhizobium

japonicum  strain  increasde  by  4.5-fold  the  arbuscular

mycorrhizal  colonization  in  soybean  roots.  This

phenomenon  could  be  due  to  the  similar  signaling

systems  that  regulated  the  symbiotic  association  of

rhizobia and AMF with plant roots (Gianinazzi-Pearson

and Gianinazzi, 1989; Tsai and Phillips, 1991; Xie et al.,

1995).

N2 fixation 

Most herbaceous legumes of family  Papillionaceae

are  symbiotic  with  nitrogen-fixing  rhizobia  and  AMF

(Javaid, 2010). Numerous studies have clearly indicated

that AM symbiosis can greatly assist nodulation and N2

fixation of numerous legumes, e.g. soybean (Hamel  et

al.,  1991a; Antunes  et  al.,  2006)  black  locust

(Olesniewicz and Thomas, 1999), pigeon pea (Stephen

et al., 2013), and mung bean (Li et al., 2009). Also, the

N  derived  from  N2 fixation  at  harvest  was  greatly

increased  in  the  mycorrhizal  faba  bean  (Qiao  et  al.,

2015). The effective AMF can enhance the performance

of rhizobial infection (Tavasolee et al., 2011) and affect

N2 fixation  in  legumes  by  increasing  the  numbers  of

nodules,  nitrogenase  activity,  the  leghaemoglobin

content of  nodules,  and shoot biomass (Hodge, 2003;

Garg and Chandel, 2011; Abd-Alla et al., 2014).

The improved formation of  arbuscular  mycorrhizas

increased nodulation by 54% in mung bean (Li  et al.,

2009) and N2 fixation by 55% in soybean (Hamel et al.,

1991a). The  number  and  dry  weight  of  nodules  also

significantly  increased  in  mungbean  inoculated  with

AMF (Xiao et al., 2010). Hawkins et al. (2000); Barea et

al. (2002) reported that the activities of N2-fixing rhizobia

with AMF increase the N2 fixation of pigeon pea.

The effect of dual inoculation of roots with AMF and

Rhizobium on  N2 fixation  has  been  established  in

soybean (Bethlenfalvay et al., 1990; Meng et al., 2015),

cowpea (Islam et al., 1990; Lima et al., 2011), and pea

(Xavier  and  Germida,  2003;  Stancheva  et  al.,  2006).

Dual  inoculation  with  Rhizobium and  Glomus

fasciculatum increased the nodule nitrogenase activity

by 36-213%  in Acacia mellifera (Lalitha et al., 2011).

Under  low  N  fertilizer  inputs,  soil  P  availability  is

usually the major factor limiting the rate of N2 fixation in
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legume  crops  (Toro  et  al.,  1998).  AMF  can  promote

nutrient uptake through mycelium extension outside the

rhizosphere, and enlarging the area that roots have to

absorb water and nutrients (Tobar et al., 1994; He et al.,

2003; Jia et al., 2004; Shockley et al., 2004). 

 The  role  of  AMF as  P  suppliers  to  legume root

nodules is of great relevance for effective nodulation and

N2 fixation  (Azcón  et  al.,  1991;  Albrecht  et  al.,  1999;

Requena  et  al.,  2001)  under  low soil  P concentration

(Barea  et al., 1989; Li  et al., 2009),  at least during the

early  stages  of  the  Rhizobium-legume  interaction

(Patterson  et al., 1990). The synergistic effect between

AMF  and  rhizobia  symbionts  is  evident  from  the  P

concentration in the nodules, which is up to three times

higher than in other organs (Vadez et al., 1997). 

In addition to  P, AMF support  nitrogen fixation by

providing legumes with other immobile nutrients that are

essential for N fixation, such as copper and zinc (Clark

and Zeto, 2000). The availability of trace metals may be

critical for the nitrogen fixation. For example, iron, sulfur

and  molybdenum  are  an  essential  components  of

rhizobia nitrogenases that fixes atmospheric nitrogen in

the  nodules  (Thorneley,  1992).  Thus,  enhanced  plant

uptake  of  Zn,  Cu  and  Mo  due  to  AMF  could  also

promote  the  effectiveness  of  rhizobia,  accelerating  N2

fixation and further promoting plant growth (Wilson and

Hartnett, 1998). Mycorrhizal colonization may also alter

root  exudation,  which  could  enhance  the

competitiveness  of  rhizobia  and  promote  nodulation,

thus  enhancing  N2 fixation  and  plant  growth  (Javaid,

2010). 

Although AMF colonize the root nodules (Baird and

Caruso, 1994; Vidal-Dominguez et al., 1994; Scheublin 

Van Der Heijden, 2006), AMF-colonized nodules did not

fix N2 (Scheublin  van Der Heijden, 2006), indicating that

AMF  don’t  deliver  nutrients  that  are  essential  for  N2

fixation  directly  into  the  nodules.  The  extent  of  AMF

effect  on  nodulation  and nitrogen  fixation  in  legumes,

depends  on  the  specific  symbiont  combination  (Clark

and Zeto, 2000), AMF species (Valdenegro et al., 2001)

and AM inoculants density (Azcón and El-Atrash, 1997).

Wahbi  et al. (2016) found that the total N fixed by faba

bean  was  27%  significantly  higher  at  the  maximal

mycorrhizal  density  compared  with  low  inoculant  and

control  treatments.  Briefly,  AMF  by  increasing  P  and

other  nutrients  absorption,  enhancing  photosynthesis,

beneficial interaction with rhizospheric microorganisms,

and  alleviation  of  environmental  stresses  improve  N2

fixation, growth and grain yield of legumes (Azcón and

El-Atrash, 1997; Siviero et al., 2008; Javaid, 2010).

Nitrogen transfer 

Besides satisfying their own N needs, legumes can

facilitate  N  acquisition  of  neighbouring  plant  species

(Pirhofer-Walzl  et  al.,  2012).  The  process  of  N

deposition  from one  plant  and  subsequent  uptake  by

another  plant  is  termed  N  transfer  (Jensen,  1996).

Nitrogen  transfer  from  one  plant  to  another  is  of

fundamental  importance  in  N2-fixing  plant-based

agricultural and natural ecosystems (Fujita  et al., 1992;

Chalk,  1998;  Forrester  et  al.,  2006).  Non-N2-fixing

species  have often been found to  have better  growth

and  yields  when  associated  with  N2-fixing  legume

species (Fujita et al., 1992; Ledgard and Steele, 1992).

This  trend  is  primarily  caused  by  the  transfer  of  a

substantial  amount of  symbiotically fixed N in different

communities including N2-fixing and non-N2 fixing plants

(Chu  et al., 2004; Frankow-Lindberg and Dahlin, 2013;

Jamont et al., 2013).

Many  researchers  suggested  that  there  were  two

pathways  for  fixed  N  transfer  from  legume  to  non-

legume.  An  indirect  transfer  through  N  release  from

nodulated  roots  of  the  legume  (Høgh-Jensen  and

Schjoerring,  2001; Paynel  et  al.,  2008;  Mahieu  et  al.,

2014);  and through the decay of aboveground litter or

belowground  organs  (roots,  nodules)  (Johansen  and

Jensen,  1996).  A  direct  transfer  through  AM  hyphae

followed by translocation (Smith and Read, 1997; Chu et

al.,  2004; Bücking  and  Kafle,  2015);  and  through

common  AM  networks  that  interconnect  roots  of

legumes and non-legume plants (Smith and Read, 1997;

Sierra and Nygren, 2006; He et al., 2009; Mahieu et al.,

2014). 

Several studies have shown the transfer of nitrogen

from nitrogen fixers to the soil, for example Brophy and

Heichel  (1989)  reported  that  alfalfa  released  4.5%  of

symbiotically-fixed N into the root zone over its growth

period. Laidlaw  et  al. (1996) found  that  the  clover

transfers  8  mg  N/m2/day  to  the  soil.  For  Paynel  and
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Cliquet  (2003),  N  compound  exudation  by  legume

followed  by  uptake  by  companion  grass  is  a  highly

significant pathway for inter-specific N transfer between

young plants. 

Other  studies  have shown  substantial  transfers  of

fixed N from legumes to non-N2-fixing crops through AM

hyphae and common AM networks, under controlled or

field  conditions  (He  et  al.,  2003,  2009;  Chalk  et  al.,

2014; Meng  et al.,  2015) (Table 1).  Higher N transfer

from soybean to corn was found only in mycorrhizally-

inoculated  plots  and  G.  versiforme increased  the

efficiency of 15N transfer from the labeled soybean plants

to corn by 45% (Hamel and Smith, 1992). Mårtensson et

al. (1998) showed that 3 to 50% of N in the chicory were

transferred from pea and 20 to 34% of N in the chicory

roots  were  transferred  from red  clover,  with  variation

between  used  AMF  isolates.  Chu  et  al.,  (2004)  had

reported  that  N  transferred  was  between  6  and  13%

from groundnut to rice and N could transfer along the

gradient  of  concentration via mycorrhizal  hyphae.  The

study  of  Wahbi  et  al. (2016)  showed that  32-50% of

fixed N were transferred from faba bean to wheat using

Rhizophagus irregularis. 

N transfers  of  approximately  5% through common

AM  networks  have  been  reported  in  a  white  clover

/ryegrass association that was inoculated with  Glomus

mosseae (Haystead  et al., 1988) and from berseem to

maize  using  Glomus  intraradices (Frey  and  Schuepp,

1992, 1993). 15% of N was transferred via common AM

networks from pea  to barley using Glomus intraradices

(Johansen  and  Jensen,  1996)  and 16.1% from mung

bean  rice  using Glomus  caledonium (Li  et  al. 2009).

Martins  and  Cruz  (1998)  reported  that  transfer  of  15N

mediated  by AMF mycelium network,  was 9.6%, from

cowpea  to  maize  plants.  Moyer-Henry  et  al  (2006)

reported  that  transfer  of  N  was  generally  very  low in

non-AM  weed  species  and  that  N  transfer  occurs

primarily through mycorrhizal hyphal networks. Nitrogen

gradients between N-rich donors and N-limited receivers

may be a driving force for unidirectional N transfers via

common AM networks (Bethlenfalvay  et al., 1991; Frey

and Schuepp, 1993).

The N  transfer  is  assumed  to  be  enhanced  if  N2

fixation by legumes can be improved by inoculation with

AMF and rhizobium (Meng  et al.,  2015).  The effect of

AMF on soil microbial populations may be an important

factor  affecting  N transfer  between mycorrhizal  plants

(Hamel et al., 1991b). Also, AMF pathway of N transfer

is effected by the hyphal density or AM inoculation rates,

for example, Wahbi  et al. (2016) reported that a higher

density of mycorrhizae favours N uptake by AM hyphae

through  vertical  translocation  at  the  expense  of  the

lateral transfer of fixed N through common mycorrhizal

networks. 

Several  studies  showed  that  ammonium,  amino

acids,  ureides,  peptides  and  proteins  have  been

identified in exudates of legumes (Brophy and Heichel,

1989, Murray  et al., 1995). AMF can modify the quality

and the quantity of host root exudates (Azaizeh  et al.,

1995) and are able to transfer substantial N to their host

plant  from  organic  N  sources  from  the  soil  material

(Leigh  et  al.,  2009).  Kähkölä  et  al. (2012)  found that

AMF inoculation of cacao saplings improved N uptake

from Inga edulis leaf litter by 0.5% and root litter by 5%.

AMF  can  take  up  free  amino  acids  which  can

represent an important N source in soils, for example,

aspartic  acid,  serine  (Cliquet  et  al.,  1997),  glycine,

glutamic  acid  (Hawkins  et  al.,  2000;  Whiteside  et  al.,

2012), glutamine (Breuninger  et al., 2004), cysteine or

methionine (Allen and Shachar-Hill, 2009). Some amino

acids are also taken up by germinating spores during

the presymbiotic growth stage of the fungus (Gachomo

et al., 2009). 

Ammonia formed by the Biological Nitrogen Fixation

is converted by oxidation or reduction to NO3
- and NH4

+

respectively,  which  are  available  to  plants  (Zahran,

1999). Transfer of NH4
+ or NO3

-   by AMF between N2-

fixing plants and non-N2-fixing plants has been reported

(Bethlenfalvay  et  al.,  1991;  Frey  and Schuepp,  1993;

Johansen and Jensen, 1996; Moyer-Henry et al., 2006).

However, a clear preference for NH4
+ is at least partly

explained by the extra energy the fungus has to spend

to reduce NO3
− to NH4

+ before it can be incorporated into

organic  compounds  (Marzluf,  1997).  The  inorganic

nitrogen  taken  up  by  the  fungus  outside  the  roots  is

incorporated  into  amino  acids,  translocated  from  the

extraradical  to  the  intraradical  mycelium  as  arginine

(Govindarajulu  et al.,  2005).  Molecular evidence for N
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uptake  by  AMF  was  obtained  through  the

characterization  of  an  ammonium  transporter  (AMT)

(Lopez-Pedrosa et al., 2006; Guether et al., 2009). Two

putative  ammonium  transporters  were  identified;  one

was  induced  in  non-colonized  cortical  cells,  and  the

other in arbusculated cells (Gaude et al., 2012) (Figure

2). AMF can obtain substantial amounts of organic N, in

particular  amino  acids,  whereas  that  3%  of  plant  N

comes from organic material (Hodge and Fitter, 2010).

High  levels  of  certain  amino  acids  (Glutamic  Acid,

Aspartic Acid, Asparagine) was reported in mycorrhized

roots  (Schliemann  et  al.,  2008).  The  N  uptake  could

involve,  among  other  transporters,  amino  acid

permeases (AAP) and peptide transporters that belong

either to the di- and tripeptide transporter (PTR) family,

also  named  proton-coupled  oligopeptide  transporter

family  (POT;  Paulsen  and  Skurray,  1994),  or  to  the

oligopeptide transporter (OPT) family, which transports

larger peptides (Hauser et al., 2001). 

Several  studies  showed  that  the  transfer  of

symbiotically fixed N between N2-fixing plants and non-

N2-fixing plants through AMF improved the growth of the

receiver plant by the net N gains (Johansen and Jensen,

1996; Moyer-Henry et al., 2006). Recently, Meng et al.,

2015  reported  that  inoculation  with  both  AMF  and

rhizobium promoted N transfer from soybean to maize,

resulting  in  the  improvement  of  yield  advantages  of

legume/non-legume intercropping.

Table 1: Transfer of N from legume to non-legume plant via AMF hyphae or common mycorrhizal networks.

Legume Non-legume inoculum Ntransfer % Reference

Mung bean (Vigna radiata) Rice (Oriza sativa)
G. 
caledonium

16.1 Li et al., 2009

Pea (Pisum sativum)

Red clover (Trifolium pretense)
Chicory (Cichorium 
intybus)

8AMF 
isolates

3-50

20-34
Mårtensson et al. (1998)

Groundnut (Arachis 
villosulicarpa)

Rice (Oriza sativa) Glomus sp. 6-13 Chu et al., 2004

Faba bean (Vicia faba) 
wheat (Triticum 
turgidum)

Rhizophagus
irregularis

32-50 Wahbi et al., 2016

Soybean (Glycine max)

non-nodulated Soybean

Sorghum (Sorghum 
bicolor)

Maize (Zea mays)

Maize (Zea mays)

Maize (Zea mays)

Field soil 
+roots

G. mosseae

G. versiforme

3Glomus sp.

G. mosseae

48

22.5

45

~5.0

-

Moyer -Henry et al., 
2006

He,  2002

Hamel & Smith, 1992

Hamel et al., 1991a,b

Bethlenfalvay et al., 
1991

Bur clover (Medicago 
polymorpha)

Grapevine (Vitis vinifera)
Field  soil
+roots

5.5
Cheng & Baumgartner, 

2004

Pea  (Pisum sativum) Barley (Hordium vulgare)
G.
intraradices

15
Johansen & Jensen, 
1996

Berseem (Trifolium 
alexandrinum)

Maize (Zea mays)
G.
intraradices

4.7
Frey & Schuepp, 1992, 
1993

White clover (Trifolium repens)
Ryegrass (Lolium 
perenne) G. mosseae ~5

Haystead et al., 1988

Cowpea (Vigna unguiculata) Maize (Zea mays)
G. 
etunicatum 9.6

Martins & Cruz, 1998

JOURNAL OF STRESS PHYSIOLOGY & BIOCHEMISTRY Vol. 17  No. 2  2021

126



Mazen Ibrahim

Figure 1: Schematic representation of AMF and Rhizobium-legume symbioses (Manchanda and Garg 2007).

Figure 2.  Current  knowledge about  N transfer  mechanisms in  mycorrhizal  interactions  (Casieri  et  al.,  2013).  Five
compartments for N-compound transfer (ammonium, nitrate, amino acids and peptides) can be differentiated:
the soil  solution, external and internal fungal cells, the interfacial apoplast and the plant cell. The different
molecules are reallocated across the different extraradicular mycelium compartments by several transporters
that are not yet fully characterized. Hence, putative uncharacterized transporters are indicated by a question
mark , fungal transporters in black and plant transporters in green, respectively. NRT nitrate transporter, AMT
ammonium transporter, AAP amino acid permeases.
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CONCLUSION AND PERSPECTIVES

The effective AMF can greatly assist nodulation and

N2 fixation of legumes. The overall AMF contributions to

N transfer are considered to be of great importance for

legume  and  non-legume  intercropping  systems  in

sustainable  agriculture.  Seeing  that  the  rhizobia  and

AMF  compatibility  is  an  important  factor  affecting

symbiotic  efficiency,  the  combination  of  adapted  and

efficient  AMF-rhizobia-legume tripartite  symbiosis  is  of

great  importance  for  N2 fixation  and  consequently  for

successful  N  transfer  in  sustainable  agriculture

especially under unfavorable environmental  conditions.

Thus,  N  transfer  through  AMF  requires  further

investigations on many plant species, AMF isolates, and

rhizobia strains under various field conditions.

N transfer  from N2  fixing  to  non  N2  fixing  plant  is

effected by the AMF hyphal density and the presence of

common AM networks. AMF hyphae are considered to

be  the  main  source  of  inocula  when  host  plants  are

present and the soil is not disturbed. The various tillage

practices  used  for  crop  production  may  negatively

impact the survival of AMF propagules, especially AMF

hyphae and common AM networks. Thus, maximizing N

transfer  and  benefits  to  associated  crop  requires

management of AMF in soil through applying agricultural

practices that minimize soil distribution.
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	AMF can take up free amino acids which can represent an important N source in soils, for example, aspartic acid, serine (Cliquet et al., 1997), glycine, glutamic acid (Hawkins et al., 2000; Whiteside et al., 2012), glutamine (Breuninger et al., 2004), cysteine or methionine (Allen and Shachar-Hill, 2009). Some amino acids are also taken up by germinating spores during the presymbiotic growth stage of the fungus (Gachomo et al., 2009).

