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Salt stress-induced limitation in crop growth and produce is a critical problem worldwide.  The
prerequisite to developing salt-tolerant plants of commercial importance is understanding the
plant  responses  to  salinity  exposure  at  physiological,  biochemical,  and  molecular  levels,
integrating various approaches to understanding underlying salt  tolerance mechanisms, and
utilizing naturally occurring genetic resources available for salt tolerance. In this review, plant
responses and associated salt tolerance, at physiological and biochemical levels through ion
homeostasis, osmolyte accumulation, hormonal regulation, antioxidant responses, and mitogen-
activated  protein  kinase  cascade  signaling  and  molecular  responses  through  transcription
factors, different gene expressions, non-coding RNA production, and epigenetic modifications
are presented. 
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A  broad  spectrum  of  abiotic  stresses  like  acidity,

alkalinity, salinity, and microbial infections are harmful to

the  plants.  Salinity  stress  is  among  the  most  crucial

environmental  stresses  to  the  productivity  of  crops

worldwide (Flowers 2004; Munns and Tester 2008). Soil

salinity shows a high concentration of soluble salts in the

soil moisture of the rhizosphere. According to the United

Nations  Environment  Programme,  nearly  50%  of  the

world's cultivated land is saline (Flowers and Yeo 1995).

Salt stress in plants can occur in two ways; first,  high

soil  salt  concentration  makes  it  difficult  for  roots  to

absorb water, and second, the high content of salt within

the plant may prove fatal as it is toxic (Munns and Tester

2008). Saline stress in plants may hamper the various

processes  such  as  flowering,  fruit  quality,  seed

germination,  survival  percentage,  which  leads  to

decreased crop productivity  (Sairam and Tyagi  2004).

Severe consequences of salinity on plant growth may be

because  of  ion  toxicity  in  cell  and  osmotic  stress

(Hussain  et al., 2007). Lipids are major constituents in

the cell membrane, which help to maintain cell tolerance

to  saline  stress.  Increased  saline  levels  disturb  the

arrangement of lipids and proteins in the cell membrane,

which leads  to  defective lipid  metabolism (Guo  et  al.,

2019). The most challenging circumstance for salt stress

is  the  degradation  of  chlorophyll  content,  which

terminates  photosynthesis  level  in  plants,  and  it  also

hampers  the  stomatal  conductance,  respiration  rate

(Doganlar et al., 2010). 

The initial reaction shown by salt-stressed plants is

water  potential  decrease,  which  hampers  water  use

efficiency,  resulting  in  significant  toxic  damage  and

reduced yield (James et al., 2011). Water relations and

osmotic adjustment regulate salt-stressed plants' growth

responses (Munns  et al., 1983). Salinity stress inhibits

water content in many crop yielding plants such as pea,

tomato, Mentha, balm, showing a deleterious reduction

in  crop  yield  (Ozturk  and  Unlukara  2004).  Metabolic

adjustments in response to salinity stress are dynamic

and  multifaceted,  e.g.,  under  salt  stress,  the  most

dramatic  change occurs  in  the ice plant  (Guan  et  al.,

2020). Salt stress can bring out a shift from C3 to CAM

pathway in this succulent plant by the induction of some

enzymatic  machinery,  e.g.,  Phosphoenolpyruvate

(Romano et al., 2020) carboxylase, within a few hours,

and the transition occurs within 6 to 8 days. The striking

feature of CAM plants is scotoactive stomata, by which

they  can  use  water  efficiently  by  showing  minimum

transpiration rate (Guan et al., 2020).

Some  metabolic  changes  are  common  to  most

plants, whereas others are specific, e.g., organic solutes

of  low  molecular  weight  show  salt-stress  induced

accumulation.  These  solutes  comprise  amino  acids

(proline  or  glutamate),  betaines  (glycine  betaine  and

alanine  betaine),  and  polyols.  During  nitrogen

deficiency,  plants  usually  accumulate  sulfonium

compounds,  like  dimethyl-sulfonium  propionate,  which

are  physiologically  similar  to  nitrogen-containing

betaines. These organic solutes act  antagonistically to

inorganic  solutes  like  Na  and  Cl  ions,  even  at  high

concentrations, and are not detrimental to the enzymes

and  cell  organelles.  That  is  why  these  organic

compounds  preferentially  function  as  compatible

osmolytes (Rhodes and Hanson 1993; Ashraf and Harris

2004). Studies revealed that higher plants could tolerate

high salinity by exclusion or accumulation of  salt.  Salt

excluders have the property  to remove salts  from the

whole  plant  or  particular  organs.  In  such  situations,

membrane permeability supports the intake of  K+ over

Na+.  Thus,  the  crops  which  exclude  salts  are

distinguished by the low concentration of  Na+ and Cl+

ions (Chen et al., 2018). Salt accumulators possess the

ability to uptake high salt content through the following

two  mechanisms.  In  the  first  mechanism,  plants  can

withstand  high  concentrations  of  intercellular  salts  by

tolerant  cell  membranes,  a  common  feature  of  salt-

stressed plants, e.g., Halophytes. In this way, the ratio of

Na+ to K+ in tissues is apparent. The second mechanism

involves  eliminating  excess  salt  that  enters  the  plant,

from  which  roots  can  uptake  ions  to  prevent  their

detrimental effects (Yensen 2006). 

Salt tolerance through physiological and 

biochemical mechanisms

Salt  stress negatively  affects  plant  growth through

various  constraints  like  osmotic  stress,  wherein  water

uptake by plants is affected, triggering significant events

like the arrest of the shoot and root (Munns et al., 2000;

Fricke  et al., 2004). Therefore, the osmotic adjustment
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becomes the requirement for plants in such conditions.

Though reduced, the root growth rate resumes within an

hour by regaining cell  turgor by inorganic ions uptake

and  changing  cell  wall  composition  like  Na+  binding

affecting Na+ passage and other ion bindings (Shabala

and Lew 2002;  Byrt  et  al., 2018).  The assimilation  of

CO2 is also affected by osmotic stress through the rapid

closing  of  stomata,  resulting  from  reduced  xylem

pressure.  The  roots  sense  and  send  the  hydraulic

signals  at  fast  speed  while  shoots  transduce  these

signals  immediately  to  alter  its  metabolism,  and  ion

channels  in  guard  cells  decode  the  altered  xylem

pressure to alter stomatal conductance (Furuichi  et al.,

2008; Christmann et al., 2013; Shabala et al., 2016).  

Salt  stress-induced  ion  toxicity,  mostly  related  to

increased Na+ and Cl- accumulation, also restricts plant

growth.  Na+ toxicity  lethal  effect  on  plants  though

unknown  can  occur  through  enzyme  inhibition;  for

example,  many  enzymes  functioning  in  primary

metabolism,  regulated by K+,  get  inhibited through the

replacement  of  K+  by  Na+ (Wu  et  al., 2018).  Salt

sensitive  plants  exhibit  increasing  physiological

dysfunctions  with  increasing  shoot  Cl-levels;  thus,  salt

tolerance  demands  the  exclusion  of  Cl- from  shoots

(Geilfus 2018; Teakle and Tyerman 2010). Halophytes

can withstand Cl- concentration more than 1M without

any adverse effect, and Cl- affects the plant by causing

less availability of  macronutrients like S and N, as Cl-

share  the  anion  transporters  with  SO4
2- and  NO3

-

(Bazihizina et al., 2019). Salt stress, mostly Na+ specific,

cause PCD (programmed cell death) in plant roots, and

events  like  cytochrome  c  release  and  DNA

fragmentation occur rapidly (Jiang et al., 2008). Mutants

of  Arabidopsis lacking  GORK,  a  K+ channel,  show

reduced or no such PCD events, suggesting entry of Na+

into cytosol causes membrane depolarisation, K+  efflux,

activation  of  PCD  executing  endonucleases,  and

caspase-like  proteases  (Demidchik  et  al., 2010;

Demidchik 2014). 

Ion Homeostasis 

NaCl is the primary soil salinity stress determinant,

so  the  mechanisms  underlying  Na+ transport  and  its

sequestration  have remained the researcher's  primary

focus. The accumulation of a high concentration of Na+

in the root cell cytoplasm is prevented by excluding Na+

from uptake and vacuolar compartmentalization of Na+

(Theerawitaya  et  al., 2020)  .  Na+  uptake  by  roots  is

carried by various ion transporters in which two essential

types include non-selectively operating cation channels,

HKT2 (high-affinity K+ transporters), and CNGCs (cyclic

nucleotide-gated)  or  GLRs  (glutamate  receptor-like)

(Demidchik 2018; Mian  et al., 2011).  Other suggested

transporters involved in Na+ uptake include HAK5, AKT1,

LCT1  (low-affinity  cation  transporter1),  and  PIP2-1

(aquaporins)  (Schachtman  et  al., 1997;  Mian  et  al.,

2011;  Isayenkov  and  Maathuis  2019;  Kronzucker  and

Britto  2011;  Byrt  et  al., 2017).  The counterbalance  of

Na+ uptake occurs through Na+ expulsion through SOS1

Na+/H+ exchanger  and  vesicles,  and  about  95%  Na+

returns to the rhizosphere (Shi et al., 2002b; Shabala et

al., 2020). Na+ vacuolar sequestration is done by Na+/H+

tonoplast  antiporters  of  the  NHX  family,  which  show

elevated  transcript  levels  and  activity  in  glycophytes

upon  salt  exposure  and  constitutive  activity  in

halophytes  (Bassil  and  Blumwald  2014;  Shabala  and

Mackay 2011). Two types of leak channels in tonoplasts,

SV  and FV (fast), need to be tightly regulated to block

the leakage of Na+ back into the cytosol (Shabala et al.,

2020). Further, Na+/H+  antiporter's higher affinity for K+

than Na+ suggests the operation of other mechanisms

like vacuolar trafficking in delivering Na+ to the vacuole

(Bassil  et al., 2019; Baral  et al., 2015). The loading of

Na+ into xylem occurs both actively and passively, and

the importance of mode of uptake depends on the time

after  salt  exposure  (Ishikawa  et  al., 2018b).  NSCC

mediate the passive Na+ xylem loading while SOS1 Na+/

H+ antiporter  and  HKT2  (K+/Na+  symporter)  carry  the

active loading (Guo  et al., 2010; El Mahi  et al., 2019;

Jabnoune  et al., 2009). SOS1 Na+/H+ antiporter occurs

abundantly  in  xylem parenchyma and HKT2 in  stellar

tissues of the root. Saline conditions favour passive K+

outward  movement  from  parenchyma  cells  into  the

xylem  due  to  depolarization,  which  creates  a  driving

force for Na+ xylem loading (Ishikawa et al., 2018b). The

CCC (cation-chloride cotransporters), which mediate K+,

Cl-,  and  Na+  symport,  create  a  driving  force  by

transporting Cl- into the xylem passively, for active Na+

xylem loading (Ishikawa  et al., 2018a). HKT1 (Class I)
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transporters  remove  Na+  from  xylem  sap,  and  these

transporters are more selective for Na+ than K+ (Munns

et al., 2012). Also, Na+ is recirculated back to the roots

from the  shoots  through  the  phloem  involving  mainly

HKT1, and this Na+ gets stored in stellar  parenchyma

cells  to  prevent  phototoxicity  and  damage  to  shoot

meristematic tissues and growing leaves (Kobayashi  et

al., 2017; Shabala 2017).

Osmolytes and Osmoprotection

Osmolytes,  compatible  solutes  or  osmoprotectants

are  polar,  soluble,  uncharged,  and  chemically  varied

organic  compounds,  not  interfering  with  cellular

processes even if  accumulated at high concentrations.

These include glycine betaine, proline  , polyols, sugar,

hydroxyproline,  β-alanine,  polyamines,  and  LEA  (late

embryogenesis  abundant)  proteins (Tahir  et al., 2012;

Wang and Nii 2000; Kerepesi and Galiba 2000; Saxena

et al., 2013). Different plant species show variations for

amounts  of  organic  osmolytes synthesized  and

accumulated,  like  proline  accumulated  in  varied  plant

groups, whereas β-alanine is accumulated only in some

members  of  plumbaginaceae  (Saxena  et  al., 2013;

Hanson  et  al., 1994).  The  external  osmolarity

determines  the  osmolyte  accumulation,  and  thus

through water influx, osmolytes function in the protection

of  structures  and  maintenance  of  cell  osmolarity

(Hasegawa et al., 2000).

The  quaternary  ammonium  compounds  that

physiologically act as potent compatible plant osmolytes

under  salt  stress  are  glycine  betaine,  (β)-alanine

betaine,  proline  betaine,  choline-O-sulphate,

hydroxyproline betaine, and pipecolate betaine (Ashraf

and Harris 2004).  GB shows ubiquitous occurrence in

organisms  like  cyanobacteria,  bacteria,  fungi,  algae,

animals,  and  several  families  of  plants  like  families

Chenopodiaceae  and  Gramineae  over  an  extensive

range of abiotic stress conditions (Turkan and Demiral

2009;  Lokhande  and  Penna  2012).  This  osmolyte  is

mostly found in chloroplasts and plays a significant role

in  stromal  adjustment  and  thylakoid  membrane

protection,  and  hence  and  photosynthetic  activity  is

maintained  (Jagendorf  and  Takabe  2001).  PS-II

(photosystem II) complex is protected by GB in saline

conditions  (Annunziata  et  al., 2019).  Against  osmotic

stress,  GB prevents  the  membrane  and  enzyme (like

Rubisco) destabilization induced by heat (Giri 2011). In

angiosperms, synthesis of GB within the cell occurs from

choline  via  ethanolamine,  by  two  sequential  oxidation

reactions catalyzed by enzymes, namely CMO (choline

monooxygenase)  and  BADH  (betaine  aldehyde

dehydrogenase)  respectively  (Luo  et  al., 2012a;

Missihoun  et  al., 2015).  In  some  plants,  another

biosynthetic pathway involving two N-methyl transferase

enzymes shows GB synthesis from glycine (Ahmad  et

al., 2012).  Studies  revealed  that  GB  improves  salt

tolerance in maize, tobacco, potato, rice, barley, tomato

belonging  to  different  agronomical  crops.  The

exploitation  of  these  plants  in  biotechnology  for  GB

synthesis has provided tolerance against various abiotic

stresses (Sairam and Tyagi 2004; Turkan and Demiral

2009). GB's unique structure enables it to interact with

macromolecules like enzymes through hydrophilic  and

hydrophobic  domains.  It  functions  in  stabilization  of

proteins, osmotic adjustment, prevention of damage to

photosynthetic apparatus, and lowering ROS (Reactive

Oxygen  Species)  levels  (Ashraf  and  Foolad  2007;

Saxena  et  al., 2013;  Cha-Um  and  Kirdmanee  2010).

Pre-treatment  of  rice  seedlings  with  GB  can  prevent

damages  like  grana  disintegration,  thylakoid  swelling,

mitochondrial swelling, and foliar spray of GB, leading to

increased photosynthetic rate, pigment stabilization, and

enhanced growth (Rahman  et al., 2015; Ahmad  et al.,

2012). 

In  contrast  to  other  amino  acids  like  methionine,

arginine,  and  cysteine,  which  show  a  decreased

concentration,  proline  shows  an  increase  in

concentration under  salt  stress (El-Shintinawy and El-

Shourbagy 2001).  The accumulation of  proline (Liu  et

al., 2006) provides a measure of improvement of salinity

stress,  and  its  intracellular  accumulation  serves  as  a

nitrogen reserve for after recovery utilization (Saxena et

al., 2013;  Ben  Ahmed  et  al., 2010).  The  Pro

concentration is metabolically regulated, and synthesis

of this imino acid occurs in plastids and cytoplasm, while

it is broken down to L-glutamate (Kadioglu et al., 2012)

in mitochondria. In plants, Pro has two precursors viz;

glutamate  (Kadioglu  et  al., 2012)  and ornithine  (Orn).

Pro  synthesis  occurs  from  Glu  via  glutamic  –  ϒ-
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semialdehyde  and  pyrroline-5-carboxylate  (P5C).  The

conversion of Glu to P5C is catalyzed by P5C synthase

(P5CS)  succeeded  by  P5C  reductase  (P5CR),  which

reduces  P5C  to  Pro  (Ashraf  and  Foolad  2007).  Pro-

biosynthesis  also  takes  place  from another  precursor

Orn which is transaminated to P5C with the involvement

of  an  enzyme mitochondrial  Orn  –ϒ-aminotransferase

(Ong et al., 2016; Verbruggen and Hermans 2008). Pro

biosynthesis  is  negatively  regulated  by  a  bHLH  TF,

MYC2, by limiting the expression of P5CS (Verma et al.,

2020).  Pro  can  quench  1O2,  act  as  a  free  radical

scavenger, buffer cellular redox potential,  and mitigate

cytoplasmic  acidosis  under  stress  (Babiychuk  et  al.,

1995; Matysik  et al., 2002;  Lee  et al., 2008).  In  Olea

europaea,  proline  supplements  improve  salt  tolerance

by  enhancing  enzymatic  antioxidants,  photosynthesis,

osmotic balance, and plant growth, while in tobacco, it

enhances  salt  tolerance  through  the  acceleration  of

antioxidant  defence  pathway-specific  enzymatic  ac

under  stress  (Babiychuk  et  al., 1995;  Matysik  et  al.,

2002; Lee  et al., 2008).  Inlular structures like proteins

and membranes  are  stabilized by  Pro  through cluster

formation  with  water,  thereby  preventing  their

denaturation, and membranes are protected through the

maintenance  of  cellular  ion  homeostasis  and  osmotic

balance  (Ashraf  and  Harris  2004;  Lee  et  al., 2008;

Gleeson et al., 2005). Silicon supplementation increases

the Pro content 3 to 6 days and decreases it  9 to 12

days  after  salt  exposure  and  negative  correlation

between Pro and cytokinin exist after 3 days of stress,

suggesting  communication  between cytokinin  and  Pro

metabolism.  Silicon  induced  Pro  increase  that  can

regulate  cytokinin  to  confer  salt  tolerance (Zhu  et  al.,

2020c) 

Sugar and Sugar Alcohols:

The  correlation  between  salt  tolerance  and

fluctuations  in  soluble  carbohydrate  concentrations

shows  that  the  accumulation  of  carbohydrates  like

sugars  (fructose,  sucrose,  glucose)  and  starch

occurs due to salt stress (Parida and Das 2005). At

higher  salinity  (400-500 mM NaCl),  plants  like  Cakile

maritime and Aster tripolium accumulate more elevated

amounts  of  total  soluble  carbohydrates  and  proline

(Megdiche  et  al., 2008;  Geissler  et  al., 2010).  Sugar

alcohol  and  sugars  function  in  storing  carbon,

scavenging  radicals,  osmoregulation,  and

osmoprotection (Ahmad and Sharma 2008; Lee  et al.,

2008;  Adams  et  al., 2005).  Furthermore,  there  is

deliberation  about  the  sugar  and  sugar  alcohols  as

molecular chaperones (Liu et al., 2006; Hasegawa et al.,

2000).  In  Setaria  sphacelata, starch  and  sugar  show

reduction in amounts under water stress for the short-

term while soluble sugars increase and starch decrease

in long-term stress, suggesting a metabolic shift towards

sucrose because starch turnover is more affected than

sucrose (da Silva and Arrabaca 2004).  

Trehalose,  a  non-reducing  sugar,  helps

angiosperms protect  from abiotic stress and alleviates

salt-induced  oxidative  stress  by  preventing  ROS

accumulation  (Mostofa  et  al., 2015).  Salt  tolerance

increases in transgenic rice overexpressing OsTRE1, a

trehalase gene (Islam et al., 2019). While functioning as

osmoprotectant  and  osmolyte,  it  prevents  membranes

and proteins from undergoing denaturation (Ashraf and

Harris  2004).  Transgenic  plants  exhibit  a  reduction  in

photo-oxidative  damage  and  increased  photosynthetic

rate with increased trehalose levels under salt stress. It

protects  biological  molecules  from injuries  induced  by

desiccation through its potential for water absorption and

in maize seedling growth improved via regulation of the

glyoxalase system and antioxidant by trehalose through

a  reduction  in  ROS,  methylglyoxal,  malondialdehyde,

and Na+/K+ (Rohman et al., 2019; Penna 2003). Sugar

alcohols (Polyols) can be acyclic like mannitol or cyclic

polyols  like  pinitol,  having  multiple  functional  OH-

groups,  and  act  as  osmolytes,  ROS scavengers,  and

chaperones (Ashraf and Foolad 2007). These can work

as  osmolytes  in  osmotic  adjustment  and

osmoprotectants  through  two indistinguishable  means,

and osmotic adjustment occurs through the facilitation of

cytoplasmic  water  retention  and  apoplast  or  vacuolar

Na+ sequestration (Parida and Das 2005). Accumulation

of  polyols  in  grapes  under  water  deficit  conditions

provides a means for refining water use efficiency and

grapevine practices (Conde et al., 2015). 

Polyamines

Polyamines  or  organic  amines,  including  Spd

(spermidine),  Put  (putrescine),  and  Spm  (spermine),
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increase  salt  tolerance  when  applied  exogenously,  or

their levels increased in transgenic plants (Bueno and

Cordovilla  2019;  Rathinapriya  et  al., 2020;  Ji  et  al.,

2019).  Different  stresses  induce  polyamines  that

regulate  the  functioning  of  specific  ion  channels  to

control  ionic  influxes  and  play  a  protective  role,  as

evidenced  by  the  outcome  of  exogenous  application

(Zhao  et  al., 2007;  Pottosin  and  Shabala  2014).

Transgenic overexpression and loss of function mutants

support polyamine's protective role (Ji et al., 2019; Zarza

et al., 2017). The endogenous level of plant polyamines

increase after salt exposure, and polyamine catabolism

regulates  the  endogenous  level  and  the  oxidative

catabolism  catalyzing  enzymes  of  polyamines,  amine

oxidases,  are  essential  in  imparting  salt  tolerance

(Takahashi  and  Kakehi  2010).  Polyamines  maintain

membrane integrity, regulate gene expression governing

osmolytes'  metabolism,  reduce  ROS  production  and

control Na+ and Cl- accumulation in various plant organs

(Ji  et  al., 2019;  Rathinapriya  et  al., 2020;  Seo  et  al.,

2019).  Spermidine  and  spermine,  when  exogenously

applied  to  like  in  soybean  seedlings,  enhance

photosynthesis and ROS metabolism, thereby improve

growth and enhance salt tolerance (Wang and Yin 2014;

Baniasadi  et al., 2018). SAMDC (S-adenosylmethionine

decarboxylase)  upregulation  and  ODC  (ornithine

decarboxylase)  and  ADC  (arginine  decarboxylase)

downregulation  led  to  decreased  Put  and  increased

Spm and Spd accumulation, alleviating the salt-induced

inhibition of  growth (Takahashi  et al., 2017).  Spd and

Spm  affect  many  metabolic  pathways,  and  in  grape

seedlings,  polyamines  with  ABA  alleviate  salt  stress

(Paul and Roychoudhury 2017; Sun et al., 2018). ADC2

deletion  increases  salt  sensitivity,  whereas  ADC

expression leads to enhanced osmotic adjustment and

better plant growth (Naka et al., 2010; Espasandin et al.,

2018). 

LEA Proteins

Late  embryogenesis  abundant  proteins  occur  in

plants  and  animals  that  prevent  desiccation,  protein

aggregation,  or  osmotic  stresses  (Furuki  et  al., 2012;

Hundertmark  et  al., 2012;  Hand  et  al., 2011).  Named

after  their  finding  in  maturing  seeds,  constitutive

expression, or salinity stress-induced expression of LEA

proteins are reported (Cumming 1999; Liu et al., 2013).

LEA proteins protect various plant molecular or cellular

structures  from  damaging  effects  of  H2O2  through

hydration, buffering, ion sequestration, direct protection

of  membranes  or  other  proteins,  or  unfolded  protein

renaturation and phosphorylation is supposedly to have

an enormous impact on the functioning of LEA proteins

under stress conditions (Zhang et al., 2000; Goyal et al.,

2005;  Liu  et  al., 2017).  IpLEA,  gene  product  from

Ipomoea  pes-caprae,  belonging  to  LEA  group  2

functions  in  drought  and  salt  tolerance  through  the

facilitation  of  water  homeostasis  or  ROS  scavenging

(Zheng et al., 2019). LEA group 1 proteins (XsLEA1-8)

in  Arabidopsis  thaliana,  while  avoiding  damage  to

subcellular  structures,  enhance  the  drought  and  salt

tolerance (Artur et al., 2019). LsEm1 (LEA group1), from

lettuce,  when  overexpressed  in  rice,  alters  the

expression of other genes like OsCDPK25, OsCDPK15,

OsCDPK13, OsCDPK9, and rab21 positively leading to

increased  salt  and  drought  tolerance  (Xiang  et  al.,

2018).  CaDHN5  (Luo  et  al., 2019)  overexpression

upregulated  several  salt-responsive  genes,  increasing

osmotic and salt tolerance (Luo et al., 2019). 

HORMONAL REGULATION OF SALINITY STRESS

Many  phytohormones  like  ethylene,  GA,  ABA,

jasmonic  acid  (JA),  and  salicylic  acid  coordinate  and

integrate, enabling plants to respond and adapt to salt

stress while ABA among these acts in different abiotic

stresses.  Water  deficit  and osmotic  stress induced by

salt stress result in rapid ABA production in shoots and

roots (Shi  et al., 2002b). ABA binding to receptors like

RCAR  (REGULATORY  COMPONENTS  OF  ABA

RECEPTORS),  PYL  (PRY1-LIKE),  and  PRY1

(PYRABACTIN  RESISTANCE1)  leads  to  inhibition  of

PP2C phosphatases and promotion of SnRK2s activity

that can activate many anion efflux channels resulting in

turgor pressure loss and stomatal closure (Duarte et al.,

2019; Zhang et al., 2017). Previously ABA was thought

to be produced in roots exposed to osmotic stress and

regulate  stomatal  closure;  however,  evidence  like

upregulation of  gene NCED3  encoding enzyme in leaf

parenchyma  upon  osmotic  stress,  catalyzing  the  first

step of ABA biosynthesis, suggest ABA delivery to shoot

from roots is not necessary (Endo et al., 2008; Buckley
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2019). Besides, synthesizing ABA in roots would require

precursor  transport  from  leaves  (Zhang  et  al., 2018).

The role of ABA produced in roots under salt stress is

still unclear even though ABA produced in roots has a

higher  concentration  than  leaves  (Shi  et  al., 2002a).

ABA in  osmotically  stressed  roots  stimulates  NADPH

oxidase  that  induces  H2O2  production  and

accumulation,  triggering  stomatal  closure  and  thus

provides a clue of its role in salt stress response (Nath

et  al., 2019).  OsABAR1  encoding  GRAM

(glucosyltransferases-like  GTPase  activators  and

Myotubularin)  protein  positively  regulates  the  ABA

pathway  and  enhances  tolerance  to  salt  and  drought

through ABA (Zheng et al., 2020).

Several  JA  biosynthesis  genes  upregulate  by  salt

stress, suggesting the role of JA signaling in salt stress-

induced  plant  responses  (Kazan  2015;  Geng  et  al.,

2013).  Salt  stress  inhibits  root  elongation  through  JA

signaling.  Physical  interaction  of  RSS3  (RICE  SALT

SENSITIVE3)  protein  with  class  C  bHLH (basic-helix-

loop-helix)  TFs  (transcription  factors)  and  JAZ

(JASMONATE  ZIM_DOMAIN)  proteins  induce  cell

elongation  whereas  RSS3  mutants  show  enhanced

expression  of  JA-responsive  genes,  suggesting  JA

functions in root growth inhibition under salt stress (Toda

et  al., 2013).  GaJAZ1 affects  salt  tolerance in  cotton

through  downregulating  genes  containing  G-box  cis-

element and reprogramming of defence associated gene

expression  (Zhao  et  al., 2020).  OsCYP94C2b  gene,

encoding  an  enzyme  catalyzing  the  conversion  of

jasmonoyl  isoleucine (active form) to the inactive one,

when overexpressed, increases the chances of survival

in  rice,  suggesting  JA  regulates  salt  tolerance

negatively.  Though,  TaORP1,  the  gene  for  JA

biosynthesis,  overexpression,  or  JA  exogenous

application,  result  in  enhanced  salt  tolerance,

suggesting  positive  regulation  of  salt  tolerance  by  JA

(Kang et al., 2005; Dong et al., 2013).  GA (Gibberellic

acid) plays a critical role in plant growth regulation under

stress  conditions,  and  endogenous  GAs  reduce  while

DELLA proteins  increase in  seedlings on exposure  to

salt  stress  (Colebrook  et  al., 2014;  Magome  et  al.,

2008).  DELLA  proteins  mediate  salt-induced  growth

restriction and help plants survive (Achard et al., 2006).

GA deficiency  in vivo  enhances salt tolerance through

Na+ sequestration  in  vacuoles  and  ROS homeostasis

(Zhang  et al., 2020f). Ethylene is vital in imparting salt

tolerance as evidenced by increased salt  tolerance by

applying ACC (1-aminocyclopropane-1-carboxylic acid),

the precursor of ethylene, and salt hypersensitivity due

to  mutations  in  genes  involved  in  ethylene  signaling

(Cao et al., 2007; Peng et al., 2014). Ethylene positively

regulates salt tolerance by modulating ROS scavenging

and generation pathways (Peng et al., 2014). 

SA enhances the osmoprotectant  (glycine betaine,

polyamines,  proline)  accumulation  and  enzymatic

antioxidant  activities  under  salt  stress,  suggesting  its

positive role in conferring salt tolerance (Misra and Misra

2012).  SA induces salt  tolerance by the restoration of

membrane  integrity  and  increased  carotenoid  and

chlorophyll content, resulting in enhanced accumulation

of  soluble  sugar  and  K+ in  the  root  (El-Tayeb 2005).

Increased antioxidant metabolism and enhanced sulfur

and nitrogen assimilation  promoted  by  SA lead  to  an

increased photosynthetic reduction (Nazar et al., 2011).

SA  treatment  enables  plants  to  adapt  under  saline

conditions by reducing NaCl promoted H+ influx and K+

efflux (Jayakannan  et  al., 2013).  BR (Brassinosteroid)

increase  antioxidant  enzyme  (GPX,  APX,  POX,  and

SOD)  activity  and  lead  to  the  accumulation  of

tocopherol,  reduced  glutathione,  and  ascorbate  (non-

enzymatic  antioxidants),  thereby  alleviating  adverse

salinity effects (El-Mashad and Mohamed 2012). 

Antioxidant responses of salinity tolerance

ROS,  mostly  hydroxyl  radical  (OH-),  hydrogen

peroxide (H2O2), singlet oxygen (1O2), and singlet anion

(O2
.-),  show  an  increased  production  under  different

environmental  stresses,  including  the  salt  stress  and

mitochondria,  chloroplasts,  peroxisomes,  and apoplast

are their  main sites of  generation (Miller  et al., 2010).

NADPH  oxidases  AtRbohF  and  AtRbohD,  polyamine

oxidase, diamine oxidase, and peroxidase mediate the

apoplastic ROS production, and salt stress leads to the

upregulation of AtRbohF and AtRbohD genes, whereas

plant  mutant  atrbohF/artboarD  exhibit  salt

hypersensitivity  (Ma  et  al., 2012).  Salt  induced  ROS

production by AtRbohF/AtRbohD leads  to  cytosolic  K+

influx  resulting  in  decreased  Na+/K+  ratios.  AtRbohF
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restricts  xylem  Na+ distribution, thereby  hampers  Na+

transport from root to shoot, whereas AtRbohD helps in

the propagation of environmental  stimuli  induced long-

distance signal (Miller  et al., 2009; Jiang  et al., 2012).

Salt  induced  antioxidative  response  against  H2O2

production  mediated  by  AtRbohF/D  helps  decrease

cellular oxidative damage (Ben Rejeb et al., 2015). The

chloroplast is the primary singlet oxygen and hydrogen

peroxide  producer  compared  to  other  organelles

(Davletova  et al., 2005). During photosynthetic electron

transport,  the photoreduction  of  O2 to  O2
- takes place

and is termed as Mehler Reaction. In the plastoquinone

pool,  the  formation  of  superoxides  is  due  to  the

reduction of molecular oxygen. In PS-I during ETC, this

reduction is executed by plastosemiquinone, ferredoxin,

or  by  sulfur  redox  centres  (Dat  et  al., 2000).  The

conversion  of  superoxides  to  H2O2 occurs  either

naturally  or  by enzyme SOD action,  and the hydroxyl

radicals are produced from hydrogen peroxide (Pospisil

et al., 2019). In plant cells, peroxisomes are the leading

producers of intracellular hydrogen peroxide, and H2O2

production induced by high oxygen and low CO2
 levels

under salt stress enhance photorespiration (Wingler  et

al., 2000; Del Rio and Lopez-Huertas 2016). The sites

for O2
- production in peroxisomes are peroxisomal matrix

and peroxisomal membrane. In the peroxisomal matrix,

the generation of O2
- radicals occurs through xanthine

and  hypoxanthine  oxidation  to  uric  acid  by  enzyme

xanthine  oxidase  (Gutteridge  and  Halliwell  2000).

Salinity induces ROS production (O2
.-)  in  mitochondria

through ubiquinone over-reduction leading to the release

of electrons from the electron transport chain to oxygen

(Miller et al., 2010). 

Plants  use  low ROS levels  as  signals  to  regulate

growth  and  development  in  response  to  different

stresses,  whereas  higher  ROS  concentration  under

stress  conditions  like  salt  stress  has  harmful  effects.

ROS disrupts cell integrity and leads to membrane lipid

peroxidation, protein denaturation, pigment breakdown,

damage  to  DNA  and  enzymes,  and  carbohydrate

oxidation (Groß et al., 2013). ROS activates various ion

channels like Ca+  channels  sensitive to H2O2 in guard

cells and root epidermal cells, Na+ cation channels, K+

efflux channels, Ca2+ pumps sensitive to OH-, disturbing

ionic homeostasis (Demidchik 2018; Zepeda-Jazo et al.,

2011).  Plant  ROS scavenging  machinery  detoxify  the

oxidative stress triggered by high salinity induced ROS

accumulation, and ROS homeostasis maintenance plays

a critical role in salt tolerance (Bose et al., 2014). ROS

scavenging  induced  salt  tolerance  includes  both  the

activity of enzymatic antioxidants like SOD (superoxide

dismutase),  (Groß  et  al., 2013)  glutathione reductase,

CAT (catalases), and APX (ascorbate peroxidase) and

non-enzymatic  antioxidant  (glutathione,  ascorbate,

tocopherols)  accumulation  (Hanin  et  al., 2016).

Enhanced  glutathione  levels  in  chloroplasts,

peroxisomes,  and  mitochondria  increase,  whereas

reduced ascorbate levels, as in vtc2-1mutant, decrease

salt tolerance (Bose  et al., 2014; Koffler  et al., 2015).

Salt stress impairs the anthocyanin production, as seen

in  air1  (anthocyanin-impaired-response1)  mutant,

evidencing the role of anthocyanin accumulation in salt

tolerance (Van Oosten et al., 2013). Glutathione acts as

a  ROS  scavenger  through  its  reaction  with  H2O2,

superoxide,  and hydroxyl  radicals,  and while  acting in

the  ascorbate-glutathione  cycle,  it  helps  in  the

regeneration of ascorbate (Foyer et al., 1997). In Allium

cepa, exogenous application of glutathione restores the

cell  viability and plasma-membrane permeability under

salt  stress,  and ascorbate plus glutathione  application

resulted in  increased plant height  and branch number

and  increased  content  of  phenols,  carbohydrates,

mineral  ions,  and  xanthophylls  (Aly-Salama  and  Al-

Mutawa  2010)  (Rawia  et  al., 2011).  Ascorbate,  an

important antioxidant,  mitigates the harmful  impacts of

salt stress and helps in plant recovery after salt stress

exposure (Agarwal and Shaheen 2007; Munir and Aftab

2011).  Plants  can  synthesize  a  lipophilic  antioxidant

known as alpha-tocopherol or Vit. E. In combination with

other  antioxidants,  alpha-tocopherol  scavenges  free

radicals  (Munne-Bosch and Alegre 2003;  Massacci  et

al., 2008).  It  plays  a  crucial  role  in  protecting  the

structure and function of PS-II as it chemically combines

with  oxygen  in  the  chloroplast  (Lopez-Huertas  et  al.,

2000).  Alpha-tocopherol  assists  in  membrane

stabilization  and  mitigates  tolerance  of  plants  during

oxidative  stress  (Munne-Bosch  and  Alegre  2003).

Overexpression of OsVTE (encoding tocopherol cyclase

JOURNAL OF STRESS PHYSIOLOGY & BIOCHEMISTRY Vol. 17  No. 1  2021

61



Peer et al.,

in  rice)  IbTC  (encoding  tocopherol  cyclase  in  sweet

potato) enhanced the salt tolerance, and such a plant

showed less accumulation of H2O2 (Ouyang et al., 2011;

Kim et al., 2019). Superoxide anion is converted to H2O2

by SOD and H2O2  to water by APX in chloroplasts, and

APX gene overexpression leads to enhancement in salt

tolerance  (Asada  2006;  Badawi  et  al., 2004).  Under

salinity  stress,  the  activity  of  SOD  increases  in

Catharanthus  roseus  and  Morus  alba (Jaleel  et  al.,

2008;  Ahmad  et  al., 2010).  In  mitochondria, Mn-SOD

(manganese  SOD)  and  alternative  oxidase  (AOX)

increase  salt  tolerance  through  ROS  detoxification

(Giraud et al., 2008). In rice, two isoforms of chaperone

protein, NCA1a, and NCA1b interact mutually exclusive

with CAT to control its activity and confer salt tolerance

(Liu et al., 2019a). 

MAPK signalling cascade and salt stress

Over  the  period,  plants  have  developed  various

mechanisms  to  counter  and  overcome  the  stress

conditions  for  their  survival,  and  among  these

mechanisms,  signaling  pathways,  production,  and

shifting of signal molecules are crucial. Signal molecules

are the by-products of biochemical reactions received by

plant receptors, usually found in the cellular membrane,

resulting in different  gene expression,  including stress

genes, and help the plants tolerate and survive under

stress conditions  (Hamel  et  al., 2006;  Colcombet  and

Hirt  2008).  Various  signaling  pathways  get  triggered

during  stress  conditions,  including  MAPK  (mitogen-

activated  protein  kinase)  signaling  cascade.  MAPK

components are a group of enzymes that enable plants

to respond to various stimuli  by different stresses and

activate plant responses like the activation of antioxidant

enzymes.  MAPK  components  get  triggered  by  the

activation  loop's  phosphorylation  or  dephosphorylation

by upstream kinases, and phosphatases can suppress

such activation (Lee  et al., 2009). Arabidopsis genome

exhibits the ability to activate 5 MKP molecules, which

include IBR5, PHS1, DSPTP1, AtMKP1, and AtMKP2.

Among  these  molecules,  AtMKP2  and  DSPTP1  can

dephosphorylate  Arabidopsis MAPK  molecules

(MPK3,4,  and  6)  in-vitro,  and  MAPK  component

activation,  and  the  expression  of  stress  genes  may

increase plant response to stress (Lee and Ellis 2007).

The  main  MAPK  molecules  which  get  activated

during stress are MPK6, MPK4, and MPK3, and under

salt stress, M2K2 activates MPK4 (Colcombet and Hirt

2008). The upregulation of M2K2 and downregulation of

MPK4 and MPK6 through MAPK cascade is related to

Me2K  (Teige  et  al., 2004).  In  Arabidopsis,  AtMPK6,

AtMPK4,  and  AtMPK3  are  regulated  by  salt  stress,

whereas  salt  stress  results  in  MAPK's  (ZmMPK5,

ZmMAPK3,  and  ZmSIMK1)  expression  in  corn  (Zea

mays) (Droillard et al., 2002; Droillard et al., 2004; Ding

et  al., 2009;  Wang  et  al., 2010).  Accumulation  of

ZmMPK3  RNA  occurs  in  plants  by  treating  it  with

ethylene,  salicylic  acid,  hydrogen  peroxide,  ABA,  or

under salinity stress (Wang et al., 2010). In Arabidopsis,

ZmSIMK  expression  enhances  plant  salt  tolerance

(Kong et al., 2011). StMAPK3 regulates salt and osmotic

tolerance through affecting the activities of enzymes like

CAT, SOD, peroxidases, and concentration of Pro, H2O2,

and  malondialdehyde  (Zhu  et  al., 2020b).  In

Arabidopsis,  overexpression  of  the  AtM2K3  gene

increases plant tolerance to salinity and its sensitivity to

ABA, implicating the  signalling role of  AtM2K3 in ABA

activation and plant tolerance under salinity (Hwa and

Yang 2007). In salt-tolerant peppermint, MAPK signaling

regulates essential oil biosynthesis under salt conditions

(Li  et  al., 2016).  Wheat  MAPK phosphatase,  TMKP1,

when  overexpressed,  increases  germination  rates,

enhanced  antioxidant  activities  like  SOD,  CAT,  and

peroxidases,  leading  to  salt  tolerance  enhancement

(Zaidi  et  al., 2016).  In  Populus  trichocarpa,

overexpression of MAPK kinase (PtMAPKK4) results in

improved germination, growth, and tolerance.

Salt responses at the molecular level: gene 

expression and transcriptional regulation

Gene  expression  in  plants  is  regulated  through

varied mechanisms resulting in specific gene expression

under specific conditions. Salt stress-induced differential

expression of thousands of genes is determined by salt

exposure  duration  or  strength  (Zeller  et  al., 2009).

Transcriptome analyses of plants after salt stress alone

or  combined  with  other  stresses  propose  widespread

crosstalk between signaling pathways of salt stress and

other  stresses  (Rasmussen  et  al., 2013).  TFs

(transcription  factors)  constitute  important  regulators
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controlling gene expression, and TFs from prominent TF

families like ERF/AP2, NAC, bZIP, WRKY, MYB act in

salt  response.  SlMYB102,  R2R3-type  MYB  TF

overexpression confers salt tolerance through lowering

ROS generation, K+/Na+ ratio maintenance, decreasing

electrolyte leakage, enhancing the activity of SOD, CAT,

APX, and peroxidase, increase in Pro, glutathione, and

ascorbate  concentrations,  and  upregulating  several

stress-associated genes like SICPK3, SICPK1, SIHAK5,

SINHX4, SINHX3, SISOS2, and SISOS1 (Zhang  et al.,

2020e).  AtMYB49 (R2R3-type MYB TF) increases salt

tolerance through changes in cutin deposition, elevating

Ca2+ level and through upregulating genes for LEA and

peroxidases,  improving  antioxidant  capacity  (Zhang  et

al., 2020c).  Another MYB TF, VcMYB4a in  Vaccinium

corymbosum, is  suggested  an  essential  abiotic  stress

repressor as its overexpression leads to enhanced salt

sensitivity (Zhang et al., 2020a).

Upregulation  and  downregulation  of  bZIP  genes

occur in salt-sensitive and salt-tolerant wheat cultivars,

respectively,  when exposed  to  an  extended period  of

salinity, whereas in rice and wheat, NAC overexpression

leads to salt tolerance (Johnson et al., 2002; Nakashima

et  al., 2007).  LpNAC13  acting  oppositely  regulates

drought  tolerance  negatively  and  salt  tolerance

positively,  and  its  overexpression  results  in  increased

chlorophyll  and  proline  content,  increased  enzymatic

antioxidants  and  decreased  malondialdehyde  content

under  salt  stress,  whereas  opposite  results  are  found

under drought conditions (Wang et al., 2020b). CBF (C-

repeat binding factor) from the AP2/ERF family plays a

positive role in the salt  response, as evidenced by an

increase  in  salt  tolerance  by  overexpressing

CBF3/DREB1A  (dehydration  responsive  element

binding protein 1A) and salt hypersensitivity in mutants

of  CBF  genes  (Zhao  and  Zhu  2016;  Kasuga  et  al.,

1999).  DREB2,  DREB1/CBF,  and  AREB/ABF  TFs

regulate abiotic stress responses transcriptionally,  and

TFs, ZFP179, and OsNAC5, are suggested to regulate

the  accumulation  of  LEA proteins,  sugar,  and  proline

under  salinity  stress,  thereby  conferring  salt  tolerance

(Mizoi et al., 2012; Fujita et al., 2013; Song et al., 2011).

NnDREB2C overexpression in salt-stressed Arabidopsis

increased  germination,  chlorophyll  content,  survival

rates,  lowered  conductivity  and  resulted  in  increased

tolerance  to  salt  and  drought  through  upregulation  of

PIP (Plasma membrane intrinsic proteins) genes (Ziyuan

et  al., 2020).  OsSTAP1  encoding  AP2/ERF  TF

overexpression  enhances  salt  tolerance  through

increasing activities of  CAT, POD, and SOD, lowering

Na+/K+ ratios and upregulating stress associated genes

like  peroxidase  and  other  ERF  encoding  genes,

suggesting its positive regulation of salt tolerance (Wang

et  al., 2020c).  AtWRKY8  in  Arabidopsis shows

increased  expression  and  binds  directly  to  the  target

gene  RD29A  promoter  under  salt  stress  (Hu  et  al.,

2013). IbWRKY2 enhances salt and drought tolerance in

sweet potato through content increase for Pro and ABA,

activity  increase  for  SOD,  and  lowering  H2O2 and

malondialdehyde  content  (Zhu  et  al., 2020a).

SlWRKY28 in  Salix linearistipularis  is found to improve

tolerance  to  alkaline  salt  stress  by  regulating  genes

involved in the pathway of ROS scavenging (Wang  et

al., 2020a). 

Regulation  of  gene  expression  by  ABA  mostly

occurs through the bZIP TF subfamily, AREB/ABF, like

ABF2  overexpression,  enhances  plant  tolerance  to

multiple stresses (Choi  et al., 2000; Kim  et al., 2004).

High  salt  and  ABA  hypersensitivity  are  exhibited  by

plants overexpressing DIG (Dynamic Influencer of Gene

expression)/DIL (DIG-like),  ABA-responsive  TFs (Song

et al., 2016). MYC2, TF involved in jasmonate signaling

positively regulates salt tolerance, and EIN3 TF involved

in ethylene signaling enhances salt tolerance via DELLA

proteins (Zhao et al., 2014; Peng et al., 2014). EIN3 act

through ESE1 (Ethylene and Salt Inducible1) and ERF1

(Ethylene  Response  Factor1)  and  activate  salt

responsive gene expression (Cheng et al., 2013; Zhang

et  al., 2011a).  SERF1  (SALT-RESPONSIVE  ERF1)

directly  binds  to  MAPK6,  MAPK5,  ZFP179  (ZINC

FINGER PROTEIN179),  and  DREB2A  promoters  and

confers salt tolerance (Schmidt et al., 2013). Some TFs

can be  controlled  by different  kinases  that  function in

salinity  tolerance  like  OsRMC  encoding  a  receptor

kinase  that  negatively  regulates  salt  tolerance,  is

downregulated through binding of  its  promoter  by two

TFs, OsEREBP1 and OsEREBP2 (Serra  et al., 2013).

Also,  OsEREBP1 expression  is  not  affected  by  ABA,
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salt,  or severe cold but is regulated by moderate cold

and drought  slightly  while ABA, cold,  salinity  enhance

OsEREBP2 expression and drought, evidencing the role

of  OsEREBP2  in  salt  tolerance  (Serra  et  al., 2013).

OSBZ8, a bZIP TF, in rice activated by phosphorylation

through the SNF-1 group of serine/threonine kinase, is

expressed highly in salt-tolerant than the salt insensitive

cultivars (Gupta  et al., 2012). CaSBP12 (SBP-box TF)

negatively  regulates  the  salt  tolerance  through

modulation of ROS signaling (Zhang et al., 2020b).

Plant  processes,  mainly  under  various  stress

conditions,  are  influenced  by  alternative  splicing.

Alternative splicing regulating proteins like Ser/Arg rich

proteins  can  splice  alternatively  under  salt  and  other

abiotic  stresses  (Staiger  and  Brown  2013).  In

Arabidopsis,  alternative  splicing  involves  the

symmetrical demethylation of Arg side chains by Type II

Arg methyltransferase, PRMT5, and  prmt5 mutants are

salt  sensitive  (Zhang  et  al., 2011b).  PRMT5  alters

H4R3sme2 (H4 arginine3 symmetric demethylation) and

LSm4 methylation status and impacts the salt response

and plant growth (Zhang et al., 2011b). Salt, ABA, and

mannitol upregulate the At-SKIP (Ski-interacting protein)

expression, and altered tolerance of At-SKIP antisense

lines  or  At-SKIP  overexpressing  lines  in  response  to

different  stresses  suggests  the  role  of  alternative

splicing  in  such  phenotypic  expressions  (Staiger  and

Brown 2013; Lim  et al., 2010). In  Arabidopsis, nuclear

SUMO proteases, OTS1 (Conti  et al., 2008) and OTS2

redundantly  regulate  salt  stress  responses,  and  the

UBC32  (Ubiquitin  conjugase)  component  of  ERAD

(endoplasmic reticulum-associated protein degradation)

affect salt tolerance through BR (Cui et al., 2012; Conti

et  al., 2008).  The  existence  of  a  mutual  regulation

mechanism  between  various  signals,  proteins,  and

genes is suggested to control various processes specific

to  abiotic  stress adaptability  of  plants  such as  in-vitro

salt  tolerance  increases  when β-carotene hydroxylase

downregulation  leads  the  increased  level  of  total

carotenoid and β-carotene (Kim et al., 2012). 

Regulation  of  salt  tolerance  in  plants  is  also

influenced  through  epigenetic  modifications  like

acetylation,  methylation,  ubiquitination,  and

phosphorylation.  Many  HATs  (histone

acetyltransferases) that catalyze histone acetylation and

HDACs  (histone  deacetylases)  that  catalyze  histone

deacetylation function in salinity  stress response such

as HDA6 interaction with HD2C results in repression of

ABI1  and  ABI2  (ABA-responsive  genes),  thereby

decrease  salt  tolerance  (Luo  et  al., 2012b).  Salt

tolerance  is  positively  regulated  by  HDA5,14,  15,18

(class II enzymes), and negatively regulated by HDA6,

9, 19 (class I enzymes) belonging to the RPD3 family of

histone  deacetylases  (Ueda  et  al., 2017).  HUB2  (E3

ligase  from  Arabidopsis)  enhances  salt  and  drought

tolerance through increasing the monoubiquitination of

H2B  histone  (Zhou  et  al., 2017;  Chen  et  al., 2019).

GmMYB84 encoding a TF conferring salt  tolerance in

soybean depends on DNA methylation,  and upstream

690nt to 950nt of its initiation codon, DNA methylation

level decreases upon salt exposure leading to its higher

expression (Zhang et al., 2020d). 

Non-coding  RNAs  like  miRNAs  (microRNAs),

siRNAs  (small  interfering  RNAs),  and  lncRNAs  (long

non-coding RNAs) also mediate salt tolerance. miR-393

and miR-169 are induced, whereas miR-398 is inhibited

by salt stress (Sunkar et al., 2012), and miR319 induces

salt  tolerance through the  downregulation  of  essential

genes involved in the methionine cycle and upregulating

genes for ethylene synthesis (Liu et al., 2019b). A 24-nt

nat-siRNA induces salt tolerance by downregulating the

expression  of  enzyme  P5CDH  (delta1-pyrroline-5-

carboxylate  dehydrogenase),  thereby  inhibiting  proline

degradation  (Borsani  et  al., 2005).  DRIR  (Drought

Induced lncRNA) regulates salt tolerance by modifying

the expression of multiple genes (Qin  et al., 2017) and

lncRNA973  in  cotton  increases  salt  tolerance  through

the regulation of TFs, salt-stress responsive genes, and

ROS scavenging genes (Zhang et al., 2019). 

Stress priming or utilizing previous stress memory to

enhance stress response by plants involves epigenetic

modifications, inherited through mitosis or meiosis, like

histone methylation and DNA methylation (Eichten et al.,

2014). Salt and drought tolerance increase through seed

priming using hyperosmotic reagents or NaCl (Sani  et

al., 2013; Cayuela et al., 1996). With mild seed priming

using  salt,  the  H3K27me3  (histone  H3  lysine  27

trimethylation)  islands  get  shortened  and  fractioned,
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which  results  in  an  alteration  in  the  transcriptional responsiveness  of  many  genes  upon  second  stress

exposure (Sani et al., 2013). 

Figure 1: Figure representing Plant response and tolerance to NaCl

Figure 2: Role of osmolytes under salinity stress
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Figure 3: Role of phytohormones in imparting salt tolerance [GA (Gibberellic Acid), BR (Brassinosteroid), ABA (Abscisic
Acid),  SA (Salicylic  Acid),  JA  (Jasmonic  Acid),  GRAM (Glucosyltransferases-like  GTPase  Activators  and
Myotubularin), RCAR (Regulatory Components of ABA Receptors), PYL (PRY1-Like), and PRY1 (Pyrabactin
Resistance1) 

Figure 4: Role of Transcription Factors (TFs) in salt tolerance. 

Many studies have described that salinity stress induces

within  genome  DNA  methylation  and  epigenetic

variation, either natural or induced by mutations in DNA

methylation  mechanisms  result  from  gene  expression

alteration mediating salt  tolerance (Karan  et al., 2012;

Wang  et  al., 2014;  Wang  et  al., 2015;  Huang  et  al.,

2013).  A  correlation  between  histone  methylation

alterations  and  inactivation  or  activation  of  genes

induced by salt (Sun  et al., 2019); however, the role of

epigenetic  changes  induced  by  salt  stress  in  salt
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tolerance is yet to be arrived at fully. 

CONCLUSIONS AND FUTURE 
PERSPECTIVE

Plant salt tolerance includes a cascade of responses

at  physiological,  biochemical,  and  molecular  levels.

Comprehensive research viz; physiological, biochemical,

and  molecular  studies  have  explained  various  salinity

mechanisms  regulating  ion  intake,  exchange  and

balance,  osmotic  regulation,  hormonal  metabolism,

antioxidant  metabolism,  and stress signaling.  Besides,

rapid  expression  of  NtNHX1  increases  plants  salt

tolerance  by  enhancing  vacuolar  Na+

compartmentalization  that  declines  the  toxic

accumulation of the ion in the cytoplasm that promotes

growth in a saline environment. The determination of net

Na+  flux  across  the  plasma  membrane  regulates  the

expression of SOS 1 (Na+  efflux) and HKT1 (Na+  influx).

Environmental  stress,  particularly  osmotic  and  ionic

stresses, are liable for the decrement in yield, especially

in  arid  and  semi-arid  regions.  Production  of  ROS  in

different  cell  organelles  chloroplast,  mitochondria,  and

peroxisomes  is  due  to  prolonged  environmental

stresses. The normal functioning of the cell is disturbed

by  ROS  as  it  attacks  biomolecules  like  DNA,  lipids,

proteins,  and  carbohydrates.  Under  extreme  stress

conditions,  ROS  finally  leads  to  cell  death.  For

overcoming oxidative stress, plants have enzymatic and

non  –  enzymatic  antioxidants.  Many  workers  have

addressed  various  benefits  of  SOD,  CAT,  APX,  GR,

MDHAR,  AsA in  overcoming  oxidative  damage to  the

cell.  There  is  an  accumulation  of  osmolytes  and

osmoprotectants, such as proline and glycine betaine, to

overcome  salt  stress's  detrimental  effects.  These

compounds help in osmotic adjustment  and protecting

subcellular  structures.  Salt  tolerance of  plants  can  be

enhanced  by  increasing  CO2  concentration  as  it

alleviates oxidative stress, which activates the oxidative

system and increases  the  accumulation  of  compatible

substances. 

LEA proteins play a significant role in  plant  stress

tolerance, but the elaborated mechanisms of plant stress

protection  remain  undetermined.  Under  abiotic  stress,

distinct signaling pathways are regulated, including the

MAPK  cascade.  MAPK  molecules  are  a  group  of

proteins that can negotiate various plant functions, like

cell cycle, plant growth and development, plant response

to stress.  The integration  of  different  MAPK pathways

can be very beneficial  for  transgenic  plant  production,

which  is  more  resistant  to  salinity  stress.  Maintaining

plant  behaviour,  particularly  Na+  cellular  concentration

under salt stress, is an important key issue to make plant

salt  tolerant.  MAPK  signaling  can  significantly  affect

such pathways by regulating proton pumps' activity, Na+

localization into vacuoles, and regulating the cell cycle.

There  is  a  crosstalk  between  different  signaling

pathways  during  the  stress  and  the  interactions  with

phytohormones.  At  the  molecular  level-specific  TFs,

non-coding RNAs and epigenetic modifications play an

essential role in countering salt stress and imparting salt

tolerance.

The limitation of crop production due to salt stress

and  ensuring  food  security  can  be  overcome  by

developing  salt-tolerant  crop  plants  by  utilizing  novel

technologies  like  gene editing  and resourceful  genetic

transformation.  The  prerequisite  for  these  novel

technologies  is  that  candidate  genes  associated  with

salinity  tolerance  must  be  recognized  and  exploited.

Though multiple studies are carried out,  the are many

areas of understanding salt-induced responses and plant

adaptability  which  need  more  focus,  including  how  a

plant  senses the salt  stress at  the cellular  and whole

plant level, what sort of changes occur at cellular levels

like cell wall modifications, cell organelles response and

signal  integration,  mechanisms  of  phytohormone

involvement.  The  control  of  specific  gene  expression

during salinity stress needs special attention to discover

and understand the role of  key players like TFs, non-

coding RNAs, and epigenetic modifications. 
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