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The transgenic and non-transgenic tobacco cell cultures were analyzed for resistance to abiotic

and biotic stress. The different physiological reaction of cell culture depending on T-DNA structure

(or transgen structure) was observed. The cell culture transformed by disarmed  Agrobacterium

tumefaciense A699  with  pCNL  65  nptII demonstrated  the  same  stress-resistance  as  non-

transgenic control cell culture. The cell culture transformed by Agrobacterium tumefaciense LBA

4400 pBiCaMV nptII +  hsp101 showed a raised stress-resistance to high temperature, high KF

concentration, and to the action of  Clavibacter michiganensis  ssp sepidonicus.  Obviously,  the

expression of transferred arabodopsis gene hsp101 provides protection properties of transgenic

cell  culture  under  the  influence  of  various  stress  factors.  Moreover,  that  agrobacterial

transformation  as  previous  stress-factor  is  supposed  to  make  a  contribution  to  formation  of

transgenic cell culture cross-resistance.
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Physiological Consequences of Genetic Transformation...

Application of genetic engineering technologies to

physiological  studies  contributed  to  significant

enhancement  of  our  knowledge  of  the  functions  of

individual  proteins  (Bourque,  1995;  Hewezi et  al.,

2006) and detailed description of various metabolism

processes  (Bock,  2001;  Kuzovkina et  al.,  2004).

Genetically modified plants become one of the most

important objects of biotechnology fostering decision

of  the  problems  of  formerly  inaccessible  complexity

level (Ahmad et al., 2012; Eapen, D’Souza, 2005; Kos

et al., 2009; Rashid, 2009; Liénard et al., 2011; Peleg

et  al.,  2011).  At  the  same  time,  there  is  no

unambiguous answer to the question what transgenic

plant  is  from  physiological  viewpoint.  Reasons  and

mechanisms  of  appearance  of  multiple  effects  of

transgenesis,  silencing  of  transferred  genes  remain

unidentified  to  a  large  extent  (Filipecki,  Maepszy,

2006;  Rischer,  Oksman-Caldentey,  2006;

Sorochinsky et al., 2011). Absence of distinct vision of

peculiarities  of  transgenic  plant  physiology  may

invoke  wrong  interpretation  of  the  results  acquired

and,  as a consequence,  erroneous  conclusions  and

inferences.  Errors  in  creation  of  commercial

transgenic  plants  my  later  end  up  in  multi-million

losses. 

Fusion of T-DNA agrobacterium into the genome

of  recipient  plant,  as  well  as  the  attack  of  any

phytopathogen,  involves  a  cascade  of  reciprocal

physiological  responses  resulting  in  significant

changes  in  metabolism  (Enikeev  et  al.,  2008).

Therefore,  physiological  consequences  of

transformation may to a large extent be determined by

not only properties of the transferred target gene, but

also by the reaction of plant cells to stress caused by

the  very  fact  of  transformation.  It  is  very  difficult  to

differentiate  these  effects  at  the  level  of  the  whole

plant  due to mutual  imposition of a large number  of

metabolism processes. 

Cell cultivars are a convenient  object for the cell

level study of physiological-biochemical processes in

the  plant,  and  simplicity  of  modeling  environmental

conditions  in  vitro provides  a  possibility  to  a  great

variety  of  the  experiment  conditions  (Bhojwani,

Razdan,  1996).  The  use  of  transgenic  plants  cell

cultivars,  in  its  turn,  assures  access  to  the

investigation of transgenesis effects.

The  present  work  was  aimed  at  the  study  of

physiological  response  of  normal  and  transgenic

strains  of  tobacco  cell  cultivars  acquired  from  the

plants transformed by various genetic constructions to

biotic and abiotic stress factors.

MATERIALS AND METHODS

The tobacco cell culture obtained from transgenic

plants  transformed  by Agrobacterium  tumefaciens

A699 strain (pCNL 65 with nptII gene) and LBA 4400

strain  pBiCaMV  with  nptII  and hsp101 (heat  shoсk

protein  101  from  Arabidopsis  thaliana) genes  as

sense  and  antisense  orientation  is  using  as  object.

The strain LBA4400 was kindly given by Vierling E.,

University  of  Arisona,  USA (Queitsch  et  al.,  2000).

Transformation  of  plant  was  conducted  by

cocultivation leaf disks with agrobacterium culture as

it  written  in  handbook  of  (Dreiper  et  al.,  1991).  A

selection of regenerants  carried out by cultivation at
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medium with kanamicin 100mg/ml. Transgenic status

of  Tо  and  T1  generation  was  proved  PCR  with

primers to the nptII gene of two types:

1.  Fo  5’ATG-ACT-GGG-CAC-AAC-AGA-CCA-TCG-

GCT-GCT3’

  Re  5’CGG-GTA-GCC-AAC-GCT-ATG-TCC-TGA-

TAG-CGG3’

a fragment about 700 bp was amplified (Fig.1a);

2. Fo 5’TCG-GCT-ATG-ACT-GGG-CAC-AAC3’

    Re 5’ GAA-GGC-GAT-AGA-AGG-CGA-TGC 3’

a fragment about 670 bp was amplified (Fig.1b).

Transgenic  plants  were  growing  in  climatic

cameras of firms “Binder” and “C L F PlantClimatics”

(Germany).

Biotic  and  abiotic  stress.  The  increased

temperature within the range of 37-53oC was used as

abiotic stressor. The cell culture cultivated for 30 min

after  its  vitality  was  evaluated  at  reaction

deoxidization  of  2,3,5-tripheniltetrazolium  chloride

(TTC) (Enikeev  et al., 1995). Also the solution of KF

was  used  as  abiotic  stressor  in  0,1-10  mM

concentration  in  cultural  medium.  After  7  days  of

cultivation the weight of cell culture was estimated at

percent relation from control cell culture weight.

Pathogenic  bacteria  Clavibacter  michiganensis

ssp sepidonicus was used as biotic stressor. Tobacco

cell culture was co-cultivated with bacterium at optical

density  0,6  OD  and  titr  3x10  cell/ml.  The  optical

density  of  bacterial  suspension  was  detected  on

photometer  “Biorad”  at  655  nm.  Co-cultivation  was

conducted at 26oC under jiggling.

Immunoblotting.  The  expression  of  arabidopsis

heat shock protein 101 (HSP101) in transgenic lines

of tobacco cell culture was defined by immunoblotting

with  antibodies  against  the  HSP101  as  written  in

standard protocols (Timmons  et al., 1990;  Sambrook

et  al.,  1989).  These  antibodies  were  present  kindly

Vierling E., (University of Arisona, USA).

RESULTS

Confirmation  of  transgenic  character  of

tobacco cells cultivars. The acquired cell cultivars

were  subjected  to  additional  check  for  transgenic

features.  PCR-analysis  confirmed  the  presence  of

amplificate  700 pare  of  base corresponding  to  nptII

gene  both  in  the  strain  transformed  by  disarmed

construction  А699  (Fig.1а),  and  in  the  strains

transformed by the constructions carrying sense and

anti-sense gene sequences hsp101 (Fig.1b).

Presence of target gene expression is considered

to  be  the  final  confirmation  of  successful

transformation.  Immunoblotting  of  proteins  from  the

strains under study with antibodies HSP101 showed

that  under  normal  cultivation  conditions  (26 С)  this

protein is intensively expressed only in the cells of the

strain  transformed  by  sense  sequence  (Nt

hsp101sense)  of  the  respective  gene,  other  strains

demonstrated  protein  in  trace  quantities  (Fig.2).

Cultivation at 37 С (mild heat shock) caused HSP101

expression in all  strains,  including cells of the strain

transformed  by  antisense  sequence  of  hsp101

(Nthsp101antisense)  gene.  Therefore,  despite  the

presence  of  antisense  construction  hsp101 gene

suppression did not take place.
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Stressors  impact  on  viability  of  tobacco  cell

cultures

High temperature impact. During incubation of

cell cultivars at 43°С (moderate heat shock) cells of

the  strain  transformed  by  disarmed  agrobacterium

Nt699  proved  to  be  most  sensitive  to  higher

temperature (Fig.3). The strain Nthsp101sense turned

out  to  be  the  most  sensitive  to  high  temperature

impact.  Resistance  of  the  strain  Nthsp101antisense

was slightly lower, but at the same time considerably

higher than in control strain Ntn.

Potassium  fluoride  impact.  Even  the  minimal

fluoride  concentration  -  0,1mM  –  used  in  the  test

provoked suppressing effect on the growth of normal

strain  (Fig.4).  With  KF concentration  in  the  medium

achieving  4,0  mM  no  culture  growth  took  place.  A

similar regularity was revealed for the strain Nt699. At

the  same  time,  cells  of  the  strain  Nthsp101sense

possessed  a  much  higher  resistance  to  fluoride.

Within  the  range  of  0,1-4,0  mM  a  small  growth

stimulation was noticed.  With further  increase of KF

concentration  in  the  medium  cultivar  growth slowed

down  and  at  the  concentration  of  10,0  mM  it

completely stopped. By fluoride resistance, the cells of

the  strain  Nthsp101antisense  were  between  the

strains  Ntn  and  Nthsp101sense,  total  cessation  of

growth  was  not  registered  even  at  maximal  KF

concentration - 10,0 mM - used in the test. 

Influence of pathogenic bacteria Clavibacter

michigenensis.  During co-cultivation of cell cultivars

with  bacterial  pathogen  Clavibacter  michigenensis

minimal  resistance  was  found  in  Ntn  strain  (Fig.5).

Unlike the impact of abiotic stressors the resistance of

the strain Nt699 was slightly higher than in the strain

Ntn.  Maximal  resistance  was  found  in  the  strain

Nthsp101sense.  The  resistance  of  the  strain

Nthsp101antisense was slightly lower.

     
Figure 1: а. Amplification of nptII gene in the line of tobacco transformed by A. tumefaciense A699.

1-7 – tobacco transgenic  lines;  8-  control  (non-transgenic  tobacco);  9-  marker-ladder  1000 b.p.;  10-

positive control (plasmid DNA from A. tumefaciense A699), 11- negative control (sterile H2O).

b. Amplification of nptII gene in the line of tobacco transformed by A. tumefaciense LBA 4400 (hsp 101,

nptII).

1- ladder 1000 p.b.; 2-4- transgenic lines with hsp101 sense; 5,6- transgenic lines with hsp101 antisense.

 

Figure 2: Immunoblotting with anti-bodies against  HSP101. 1,2 – normal strain;  3,4 – strain with  hsp101 gene

sense; 5,6 - strain with hsp101 antisense; 7,8 –strain transformed by A. tumefaciense A 699

JOURNAL OF STRESS PHYSIOLOGY & BIOCHEMISTRY  Vol. 11  No. 2  2015

67

a b



Enikeev et al.

 

Figure 3: High temperature (43°) impact on viability of cell cultivars of normal and transformed tobacco strains.

n=4. 

 
Figure 4: KF impact on the tobacco cell culture growth. n=4.

 
Figure 5: Impact  of  bacterial  pathogen  Clavibacter  michiganensis on  viability  of  cell  cultivars  of  normal  and

standard tobacco strains. n=4. 
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DISCUSSION

The choice of evaluation criteria for physiological

consequences  of  plant  genetic  transformation  is  a

complex  problem,  which has not  been resolved yet.

According  to  modern  views,  each  individual

transgenic organism is a fundamentally new system,

which  is  significantly  different  from  the  initial  form.

Variations  of  physiological  reactions  are  known

among  transgenic  plants  acquired  under  identical

conditions and through the use of the same genetic

constructions  (Bhat,  Srinivasan,  2003).  These might

be  caused  by  the  accidental  character  of  T-DNA

insertion place and damage of host genes (Baudo et

al., 2006; Day et al., 2000; Latham et al., 2006). This

assumption  is  nevertheless  disputable.  Methodical

basis  of  genetic  engineering  is  plant-agrobacterial

symbiosis,  the  parameters  of  which  have  been

developed through millions  of  years  of  co-evolution,

which,  in  its  turn,  presupposes  presence  of  certain

interaction  mechanisms.  In  present  day

understanding, joint evolution of host and parasite is

aimed  to  develop  compatibility  mechanisms  via

increase  of  the  host  resistance and  selection  of  the

least pathogenic forms of parasite. At the same time

organisms-symbionts  form  specific  systems  of

metabolism  regulation  targeted  at  preservation  of

common homeostasis (Roitman, Be’er, 2008).

The  fundamental  difference  of  natural

transformation from artificial transgenesis is in the fact

that  artificially  formed vectors,  besides agrobacterial

genes,  carry  genetic  elements  isolated  from  other

organisms.  Thus,  multitude  of  effects  is  conditioned

not so much by accidental character of the insertion

spot, but by the properties of the transferred gene. 

Maximal  resistance,  regardless  of  the  nature  of

stressor,  was found in the strain  of  Nthsp101sense,

which confirms  universal  character  of  HSP101 as a

chaperon  protein,  which,  via  protein  desagregation

and reactivation (Queitsch et al., 2000), ensures plant

cell protection from damages caused by the impact of

unfavourable factors (Ogawa  et al., 2007; Shafikova

et al., 2013).  In keeping with the currently prevailing

views,  absence  of  expression  of  in-built  anti-sense

sequence of the target gene witnesses unsuccessful

transformation,  and  physiological  consequences  of

the  transformation  will  be  analogous  to  those  of

transformation  by  disarmed  construction.  However,

the  results  we  acquired  do  not  prove  this  idea.  It

appears  more  probable  that  along  with  protective

function  of  HSP101  there  is  general  increase  of

resistance resulting  from response to transformation

as a complex  biotic  stressing  factor  (Enikeev  et al.,

2010, 2012). Different characters of stress response

in the strain transformed by the construction without

target  genes  and  strains  carrying  sequences  of  the

gene  hsp101  Arabidopsis  thaliana L.,  apparently

reflect diverse levels of stress response.

Alien gene  hsp 101 (in this case the one from A.

thaliana,  Brassicaceae  family)  is  perceived  by

tobacco (N. tabacum,  Solanaceae family) cells as a

pathogen,  which  triggers  additional  protective

mechanisms.  In  compliance  with  the  concept  of

various  transgenity  levels  (Nielsen,  2003),  the

probability  of  transgenesis  by-effects  is  directly

proportional to systematic remoteness of gene donors

and  recipient.  Nevertheless,  organisms-symbionts
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could have developed other interaction mechanisms.

As  a  result,  plant  response  to  in-building  of

agrobacterial genes in its genome takes place at the

level of mechanisms,  similar to interaction of closely

related  genes  (cisgenic  organisms),  whereas

response to Arabidopsis gene in-building into tobacco

genome  takes  place  according  to  the  scenario  for

remote  species  of  the  same  kingdom  (line-genic

organisms).  A  specific  reaction  of  plant  cells  to  in-

building of  Agrobacterium  genes is confirmed by the

fact  of  multiple  identification  of  the  latter  in  the

genomes of plants of Nicotiana genus (Intrieri, Buiatti,

2001;  Suzuki  et al., 2002; Tanaka, 2008; Joshua  et

al., 2010), which is apparently due to horizontal genes

transfer  during  formation  and  evolution  of  the

mechanisms of plant-agrobacterial symbiosis. Recent

studies  established  the  presence  of  agrobacteria

genes  in  the  genomes  of  other  plant  species

(Matveeva et al., 2012). 

Thus,  the  results  presented  allow us  to  make  a

number  of  suppositions  to  be  considered  in  further

studies in the domain of transgenic plant physiology.

1.  Confirmation  of  the  transformation  event

exclusively  on  the  basis  of  the  expression  of

transferred  target  gene  is  methodologically  wrong.

Target  gene  silencing  may  be  a  consequence  of

protective  reactions chain  in response  to “pathogen

attack”.  Therefore,  lack  of  target  gene  expression

does not mean absence of transformation fact. 

2. The use of transgenic  objects for the study of

functions  of  individual  proteins  (particularly  with  the

application of anti-sense strategy) is justified only in

the  case  of  close  systemic  affinity  of  donor  and

receptor.  The  transgenity  level  should  not  exceed

cysgenic  level,  otherwise  the  results  may  be

intensively  distorted  by  the  imposition  of  stress

reaction. 

3.  Assessment  of physiological  consequences of

transgenesis  with control  plants presented by plants

transformed with disarmed strains as compared to the

plants  transformed  by  target  genes,  should  be

performed with particular  caution,  as here we mean

fundamentally  different  systems.  If  the  process  of

transformation  with  disarmed  strains  is  affine  to

natural agrobacterial transformation, where plant and

bacterium are co-adapted during millions of years of

evolution,  introduction  of  a  construction  with  alien

gene  results  in  the  formation  of  much  less  stable

system. 
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