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Nitrogen (N) and phosphorus (P) are two important macronutrients with diverse functions in 
plants. Therefore, the effects of their deficiencies on different physiological and biochemical  
characteristics especially in crops have always been investigated. In this study, the effects of  
nitrate and phosphate deficiencies in two levels of 25% and 35% deficiencies compared to  
control plants were studied in Lycopersicon esculentum Mill. Results were analyzed statistically 
that showed a significant increase of root soluble and insoluble sugars and peroxidase activity 
and a significant decrease of root soluble proteins in both levels of nitrate and phosphate 
deficiencies which have less been studied. Furthermore, reverse relationships between soluble 
sugars  and  soluble  proteins  (r2=0.996)  and  between insoluble  sugars  and  soluble  proteins 
(r2=1) under nitrate deficiencies were developed. Also, by decreasing nitrate, β-caroten and 
xanthophyll  contents  decreased.  By  decreasing  phosphate,  concentration  of  β-caroten 
diminished  but  xanthophyll  contents  were  not  affected  significantly.  On  the  whole,  
biochemical  characteristics  were  affected  more  in  nitrate-deficient  treatments  in  tomato 
plants than those of control plants.
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Nitrogen  (N)  and  phosphorus  (P)  are  two 

essential  macronutrients  to  crops  which  improve 

their growth, yield and product quality (Togun et al. 

2004; Chen et al. 2007). Nitrate and ammonium are 

two major sources of N for plants and their uptake 

occurs  at  the  root  level  via  specific  transporters 

(Togun et al. 2004; Chen et al. 2008; Yin et al. 2006; 

Masclaux-Daubresse  et  al.  2010).  However,  plants 

uptake the majority of their N from the assimilation 

of nitrate and subsequent reduction to ammonium 

which then incorporated into amino acids that are 

necessary for protein synthesis (Sohlenkamp  et al.  

2002;  Urbanczyk-Wochniak  and  Fernie, 2005; 

Masclaux-Daubresse  et al.  2010). Also, it has been 
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demonstrated  that  nitrate  has  both  nutrient  and 

signal metabolite functions which are important in 

plant  metabolism,  photosynthesis  and  growth 

(Glass et al. 2002; Urbanczyk-Wochniak and Fernie, 

2005).

Likewise, P as an essential macronutrient for all 

living  organisms,  is  a  limiting  factor  for  crop 

productivity (Franco-Zorrilla et al. 2004; Chen et al.  

2008).  P  is  taken  up  by  plants  from  soil 

preferentially in the orthophosphate forms (H2PO4
– 

and  HPO4 2–)  by  specific  phosphate  transporters 

(Vance  et  al. 2003;  Chen  et  al. 2008).  P  moves 

symplastically  from the root surface to  the xylem 

and then to the cell cytoplasm and from cytoplasm 

to vacuole of the above-ground organs (Vance et al. 

2003).  This  macronutrient  has  been  found  in 

essential molecules such as ATP, nucleic acids and 

phospholipids.  Also,  it  is  important  in  metabolic 

processes  such  as  energy  transfer,  protein 

activation  and  carbon  (C)  metabolism  (Wu  et  al. 

2003).

Therefore,  low  availability  of  these  two 

macronutrients  is  a  major  constraint  for  crop 

growth  and  production  (Lo´pez-Bucio  et  al. 2003; 

Chen  et  al. 2008).  Falling  acid  rains  in  industrial 

regions and subsequent nitrate leaching results in 

reduced  N  concentrations  in  soil  transporters 

(Khavari-Nejad  et al.  2009; Masclaux-Daubresse  et  

al. 2010). Also, because of insoluble complexes of P 

with  cations  in  acid-weathered  soils,  little 

phosphate  is  available  to  plants  in  most  soils 

(Hammond  and White, 2008; Turner, 2008; Vance, 

2003). So, plants have evolved developmental and 

biochemical adaptations to low concentration of N 

and P in soil (Franco-Zorrilla  et al.  2004; Masclaux-

Daubresse  et  al.  2010).  However,  most 

investigations  have  been  done  on  overground 

organs and less has been reported in roots.  Plant 

roots  sensing  and  adaptation  to  changes  in  the 

nutrient  is  important.  Also,  this  organ  performs 

many  essential  functions  such  as  nutrient  uptake 

and  it  is  important  to  investigate  different 

biochemical changes of it  under nutrient stress of 

the rhizosphere (Lo´pez-Bucio et al. 2003; Shin et al. 

2005).

In this study, certain biochemical characteristics 

of tomato (Lycopersicon esculentum Mill.) roots and 

leaves  in  response  to  nitrate  and  phosphate 

deficiencies  have  been  evaluated.  Also, 

relationships  between  some of  these  biochemical 

parameters were developed.

MATERIALS AND METHODS

Plant materials and treatments. Tomato seeds 

(Lycopersicon  esculentum  Mill.  cv.  Urbana  V.F.) 

were obtained from Falaat Company, Tehran, Iran. 

The  seeds  were  sterilized  in  1%  (w/v)  sodium 

hypochlorite  (2  min)  and  washed  5  times  with 

sterile distilled water. Then, they were transferred 

to petri dishes in darkness at 25oC for germination. 

Six  days  old  seedlings  were  transferred  to  pots 

containing sterilized sands under a light density of 

approximately  100  μmol  m-2 s-1,  day/night 

temperatures of 26/17 oC under a 16 h photoperiod. 

Plants  were  grown  in  half–strength  Hogland’s 

nutrient  solution  for  10  days.  At  4th  leaf  stage, 

plants  were  treated  with  3.75  and  3.25  mM  of 

KNO3,  defined as 25% and 35% nitrate deficiency, 

respectively compared to complete solution (5 mM 

KNO3) or 0.75 and 0.65 mM of KH2PO4, defined as 

25%  and  35%  phosphate  deficiency  respectively 

compared to complete solution (l mM KH2PO4), for 

23 days before being harvested. Nutrient solutions 

were  changed  twice  a  week  and  the  pH  was 

adjusted to 6.5–6.8 regularly performed at 48 day 
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interval.  After 42 days of experimental period, for 

biochemical analysis plants were harvested.

Biochemical  assays.  Root  soluble  protein 

content was measured according to the method of 

Bradford  (1979)  and  activity  of  peroxidase  was 

determined  according  to  Sudhakar  et  al.  (2001). 

Soluble  and  insoluble  sugars  contents  were 

determined according to the method of Hellebust 

and  Craigie  (1978).  The  concentration  of  leaf 

chlorophylls  were  estimated  according  to  Arnon 

(1949)  spectrophotometrically  and  activity  of 

peroxidase was determined according to Sudhakar 

et al. (2001). 

Statistical analysis. The research was conducted 

using  completely  randomized  design  with  four 

replications. Data were analyzed  by the analysis of 

variance (ANOVA) using SAS software.

 
Figure 1: Relationships between soluble protein content and root insoluble sugars (A) and soluble 

sugars concentrations (B) of tomato roots grown in nitrate-deficient solution (n=4).
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Table  1. Effects  of  nitrogen  and  phosphorus  deficiencies  on  root  soluble  protein,  soluble  and 
insoluble sugars.  Means (±SE) of four replicates,  numbers followed by the same are not 
significantly different (P<0.05).

Table 2. Effects of nitrogen and phosphorus deficiencies on leaf carotenoids content and root 
peroxidase activity. Means (±SE) of four replicates, numbers followed by the same are not 
significantly different (P<0.05).

 
RESULTS AND DISCUSSION

Sugars. Soluble and insoluble sugars contents in 

the  roots  increased  significantly  (Table  I)  in  N-

deficient  plants.  Similar  observations  in  Glycine  

max  showed  that  nitrate  deficiency  results  in 

accumulation of sugars in roots (Rufty et al. 1988). 

Another  study  on  Glycine  max showed  increased 

concentration of sucrose and starch in nitrate- and 

ammonium-deficient plants (Robinson, 1996). Also, 

these  results  were  consistent  with  studies  on 

Solanum  lycopersicum  (Urbanczyk-Wochniak  & 

Fernie,  2005) and  Olea europaea L.  (Boussadia  et  

al. 2010). However, less results have been reported 

for  changes  in  biochemical  parameters  under  N 

deficiencies.  Because of  closely relation of  carbon 

(C)  and  N  assimilation  with  the  rates  of  plant 

growth, it seems that N deficiencies would induce 

enzymatic  activity  of  carbohydrates  biosynthesis 

pathway.  Also,  decreased  growth  in  N-deficient 

plants  induces  sink  limitation  within  the  whole 

plant  which  reduces  photosynthesis.  Therefore, 

higher levels of C would allocate to the roots (Paul 

and Foyer, 2001; Remans et al. 2006 ; Boussadia et  

al. 2010).

Results  showed  significant  decreased 

concentrations  of  sugars  in  roots  of  P-deficient 
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tomato plants  (Table  I).  However,  responses to  P 

limitation  seem  to  vary  in  different  plants  and 

species.  A  decrease  in  starch  and  soluble  sugars 

concentrations  has  been  reported  in  P-deficient 

tomato plants cultivar Capita (De Groot et al. 2003; 

Khavari-Nejad et al.2009) and rice plants (Nanamori 

et  al.  2004).  Our  results  were in  conformity  with 

these studies so that it seems decreasing in sugars 

of  P-deficient  tomato  plants  cultivar  Urbana 

resulted  from  decreased  activity  of  Calvin  cycle 

enzymes,  which  then  reduced  CO2 fixation  and 

carboxylation  capacity  (Pieters  et  al.  2001). 

However, less studies have been shown an increase 

in  sugar  concentration  of  roots  under  P-deficient 

condition  (Ciereszko  et  al.  1996;  Sarker  and 

Karmoker, 2011). 

Soluble proteins.  Soluble proteins decreased in 

both N and P treatments (Table II). Our results were 

in conformity with findings in  Oryza sativa  (Huang 

et al. 2004), Sorghum bicolor (Zhao et al. 2005) and 

Solanum  lycopersicum  (Urbanczyk-Wochniak  and 

Fernie, 2005) in N-deficient condition. N deficiency 

induces the degradation of proteins by production 

of ROS (Crafts–Brandner, 1992 ; Xu et al. 2011). On 

the  other  hand,  we  can  refer  the  decreased 

concentrations of soluble proteins to the reduction 

in production of amino acids in protein biosynthesis 

process  because  N  is  a  structural  element  of 

chlorophyll  and  protein  molecules  (Ray  Tucker, 

2004).  Also,  soluble  proteins  decreased  in  P-

deficient  tomato  roots  which  were  related  to 

decreased phosphorylation of  metabolic  reactions 

in  protein  biosynthesis  pathway.  These  findings 

were in consistent with observations in Zea mays L. 

(Usuda and Shimogawara, 1992; Yun and Kaeppler, 

2001),  Lens culinaris (Sarker  and Karmoker,  2011) 

and Phaseolus vulgaris (Lima et al.,2000; Zafar et al. 

2011).  Also,  our  results  revealed  an  inverse 

relationship  between  root  soluble  (r2=0.996)  and 

insoluble (r2=1)  contents  and root  soluble  protein 

concentrations  in  N-deficient  treatments  which 

confirms  the  competition  between  N  and  P  in 

metabolism processes (Figure 1).

Peroxidase activity. Root peroxidase activity on 

a  soluble  protein  basis  significantly  increased  in 

both  N-  and  P-deficient  treatments  (Table  2).  N 

deficiency can increase in excitation pressure in PSII 

centers,  and  overproduction  of  reactive  oxygen 

species (ROS) which enhance the activity of such as 

perodixase as an antioxidant enzyme (De Groot & 

Rauen,  1998).  ROS  also  play  a  role  in  regulating 

gene  expression  in  response  to  the  deficiency  of 

several macronutrients including N and P (Shin  et  

al. 2005;  Kováčik and  Bačkor,  2007).  It  has  been 

shown  that  certain  genes  can  be  induced  more 

specifically upon the deprivation of some nutrient. 

For  example,  a  peroxidase  gene,  TPX1,  has  been 

identified in tomato roots which can be induced in 

P-deficient  condition  (Quiroga et  al.  2000). 

Peroxidase  activity  analyzed  was  also  remarkably 

higher  in  low  N  plants  which  detoxify  the  ROS 

produced  (Asada,  1999;  Logan  et  al. 2006). 

Accumulation of the antioxidant systems including 

peroxidase  has  been  observed  in  several  plants 

such  as  Prunus  incise  (Zhou  et  al.  2002)  Coffea 

arabica L. under nutrient deficiency (Pompelli et al.  

2010),

Carotenoids.  Concentration of leaf β carotenes 

were  significantly  decreased  in  both  N-  and  P- 

deficiency  treatments  (Table  II).  Although 

carotenoids  decreased  remarkably  with  a 

diminishing N supply and decreased concentrations 

of xanthophylls was observed in N-deficient plants 

but in P-deficient ones, the content of xanthophyll 

did  not  significantly  change. Similar  effects  has 

been observed in  Caspicum annuum  L. (Doncheva 
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et al.  2001), Oryza sativa  (Huang  et al., 2004) and 

Coffea arabica L. (Pompelli  et al.  2010), whereas P 

deficiency did not affect Phaseolus vulgaris (Lima et  

al. 2000). It has been demonstrated that carotenoid 

content  depended  on  the  presence  and  ratio  of 

macronutrients  especially  N  as  one  of  the  most 

essential  element  (Bojovic  and  Stojanovic,  2005) 

and  its  deficiency  decreases  the  accumulation  of 

protective carotenoids. Therefore, the biosynthesis 

of  these  compounds  is  tightly  regulated  by 

environmental  conditions  such  as  nutrient 

availability  (López-Ráez  and  Bouwmeester,  2008). 

Enhanced  employment  of  xanthophyll  cycle-

dependent  energy  dissipation  under  N-  deficient 

conditions  has  been  observed  (Verhoeven  et  al.  

1997).  Also,  N  deficiency  can  induce  leaf 

senescence and production of ROS, which leads to 

degradation of some leaf macromoleculs which can 

oxidize  some  pigments  (Crafts–Brandner,  1992). 

Also, it has been shown that P starvation can induce 

changes  in  gene  expression  of  some  carotenoids 

including β carotenes and compounds derived from 

them  in  tomato  roots  (López-Ráez  and 

Bouwmeester, 2008). However, It is supposed that 

xanthophylls  did  not  affect  significantly  for  their 

photoprotective  roles  in  leaves  which  need more 

investigation.

CONCLUSION

Finally,  these  results  suggested  that  N  and  P 

deficiency can alter some root and leaf metabolic 

characteristics.  Root  system may be  important  in 

detecting  or  sensing  changes  in  soil  N  and  P 

conditions  which  can  result  in  metabolic  and 

developmental  responses.  Also,  roots  tended  to 

accumulate more soluble and insoluble sugars in N-

deficient roots which showed reverse relationships 

with  soluble  protein  contents.  Leaf  carotenoid 

content especially β caroten, also, depends on the 

presence and ratio of macronutrients and it would 

decrease in N- and P-  deficient  condition. On the 

whole, biochemical parameters were affected more 

in  nitrate-deficient  treatments  in  tomato  plants. 

More  detailed  research  will  be  required  to 

determine other biochemical parameters including 

antioxidative enzymes and the signaling pathways 

that  mediate  molecular  and  developmental 

responses of plants to N and P deficiency.
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